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Abstract 16 

We integrate the refactored community Noah-MP version 5.0 model with the NASA Land 17 

Information System (LIS) version 7.5.2 to streamline the synchronization, development, and 18 

maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. We 19 

evaluate and compare 5-year (2018-2022) global and regional benchmark simulations of 20 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for a set of key land surface variables. Both models 21 

capture the spatial and seasonal distributions of observed soil moisture, latent heat (LH), snow 22 

water equivalent (SWE), snow depth, snow cover, and surface albedo, with similar bias patterns. 23 

Both models tend to have negative soil moisture bias over wet soil regimes and positive bias over 24 

dry soil regimes, with slightly higher (£ ~0.01 m3/m3 for global mean) soil moisture in LIS/Noah-25 

MPv5.0 than LIS/Noah-MPv4.0.1 across most regions. The model bias patterns of LH overall 26 

follow those of soil moisture, while LIS/Noah-MPv5.0 has a lower LH across most non-polar 27 

regions than LIS/Noah-MPv4.0.1, which reduces the global mean LH bias from 0.99 W/m2 to -28 

0.39 W/m2. The model SWE bias patterns are dominated by the precipitation and temperature 29 

forcing uncertainties, with slightly lower SWE values in LIS/Noah-MPv5.0 (global mean bias of 30 

-13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of -10.1 mm). The model bias patterns of 31 
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snow depth generally follow those of SWE. LIS/Noah-MPv4.0.1 consistently overestimates snow 32 

cover globally with a mean bias of 0.11, while LIS/Noah-MPv5.0 effectively reduces the 33 

overestimates across the global snowpacks with a mean bias of 0.07 because of updated snow 34 

cover parameters. Both models show widespread overestimates of surface albedo over mid-latitude 35 

and high-latitude regions but significant underestimates in the Sahara Desert and Antarctica. This 36 

study reveals possible model deficiencies, motivates future improvements in coupled canopy-37 

snowpack-soil processes and input soil data, and points to the importance of considering 38 

observational and forcing data uncertainties in model evaluation. 39 

 40 

 41 

1. Introduction 42 

 Land processes play a profound role in the Earth and climate systems through altering 43 

surface water and energy balances and feedback to the atmosphere (Fisher and Koven, 2020; Blyth 44 

et al., 2021). Earth’s land surface provides important boundary conditions for atmospheric 45 

processes and climate/weather predictions particularly at the subseasonal-to-seasonal (S2S) time 46 

scale (Koster and Walker, 2015; Benson and Dirmeyer, 2023). Furthermore, as climate changes, 47 

increasing climate/weather extremes (e.g., drought, flood, heatwave, and fire) and food-water 48 

security issues (e.g., agricultural production and irrigation management) are happening at the land 49 

surface, triggering key crises for the society (Sillmann et al., 2017; AghaKouchak et al., 2020). To 50 

tackle these critical land-related environmental issues, accurate land modeling systems are needed. 51 

 There have been substantial efforts in the past decades to develop and improve various land 52 

modeling systems (e.g., Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997; Ek et al., 53 

2003; Oleson et al., 2010; Best et al., 2011; Niu et al., 2011; Haverd et al., 2018). Among them, 54 

the NASA Land Information System (LIS) is a widely used, established open-source framework 55 

for high performance land surface and terrestrial hydrology modeling as well as data assimilation 56 

(DA) of satellite and ground-based observations (Kumar et al., 2006; Peters-Lidard et al., 2007; 57 

Kumar et al., 2008a). The LIS system integrates different land surface models (LSMs), satellite 58 

and ground observations, and advanced computing and data management tools, to enable an 59 

interoperable environment that is applicable across different spatial and temporal scales. Various 60 

model developments and applications using LIS have been conducted in the past decade, such as 61 

coupling with atmospheric models to improve weather predictions (Kumar et al., 2008b; Wu et al., 62 
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2016), DA of observed vegetation, snow, terrestrial water storage, albedo, and soil conditions to 63 

improve land surface modeling (Liu et al., 2015; Santanello et al., 2016; Kumar et al., 2016; Kumar 64 

et al., 2019; Kumar et al., 2020), and applications for hydrological predictions (Arsenault et al., 65 

2020), food security (Hazra et al., 2023), and land analysis (Nie et al., 2024).  66 

LIS allows the use of an ensemble of LSMs, such as Noah (Chen et al., 1997; Ek et al., 67 

2003), Noah-MP (Niu et al., 2011), CLM (Oleson et al., 2010), VIC (Liang et al., 1994), JULES 68 

(Best et al., 2011), and CABLE (Haverd et al., 2018). Among them, Noah-MP is one of the most 69 

commonly used state-of-the-art LSMs in the world (He et al., 2023a). Built upon the Noah LSM, 70 

Noah-MP has significant enhancements in representations of canopy-snow-soil-hydrology 71 

processes and interactions as well as capabilities of modeling human activity impacts (e.g., crop 72 

dynamics, irrigation dynamics, tile drainage, and urbanization). The multi-parameterization 73 

options of Noah-MP further allow for uncertainty analysis and model performance 74 

optimization/calibration based on multi-physics model ensembles (Li et al., 2020). Noah-MP has 75 

been serving as a key land component of various research and operational weather and 76 

hydroclimate models, such as the NOAA Unified Forecast System (UFS), the Weather Research 77 

and Forecasting (WRF) model, the U.S. National Water Model (NWM), the Model for Prediction 78 

Across Scales (MPAS), the Korean Integrated Model (KIM), and the Chinese Global-to-Regional 79 

Integrated Forecast System (GRIST). Because of its advantages, Noah-MP has been applied in 80 

numerous applications, including high-resolution climate modeling (Liu et al., 2017; Rasmussen 81 

et al., 2023), vegetation and soil DA (Kumar et al., 2019; Xu et al., 2021), climate extremes 82 

(Arsenault et al., 2020; Kumar et al., 2021; Abolafia-Rosenzweig et al., 2022, 2023, 2024a), 83 

snowpack and hydrology (He et al., 2019; Jiang et al., 2020; Hazra et al., 2023), agriculture and 84 

groundwater (Barlage et al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue et al., 2024, 85 

2025).  86 

Recently, the community Noah-MP has undergone a substantial code modernization effort 87 

(version 5.0) to improve its modularity and interoperability (He et al., 2023b), with many physics 88 

updates and bug fixes compared to the versions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP 89 

versions in the current LIS (version 7.5.2) were implemented by manually replicating the Noah-90 

MP source code and updating LIS/Noah-MP interface and drivers, which does not allow easy 91 

model upgrades and hence leads to a long-delayed version update compared to the community 92 

Noah-MP. Thus, in this effort, we describe the streamlining of the development and maintenance 93 
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of Noah-MP in LIS to enable the seamless integration between LIS and the community Noah-MP 94 

version to further enhance the interoperability and applicability of both models. Specifically, we 95 

couple the refactored community Noah-MPv5.0 with the LIS framework through the GitHub 96 

submodule mechanism accompanied by developing a new LIS/Noah-MP interface, which 97 

provides a direct, automatic link between the two models’ source codes. This integration will allow 98 

easy code updates, synchronization, and maintenance for the coupled LIS/Noah-MP framework. 99 

The second goal of this study is to evaluate and compare global and regional benchmark 100 

simulations between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land surface conditions. 101 

Such systematic benchmarking is needed to examine the realism of LIS/Noah-MP model 102 

simulations, quantify the gaps between modeling and observations, and identify key processes for 103 

future model enhancements. This study is a step toward establishing a ‘scorecard” type of practice 104 

for LSMs. 105 

 106 

2. Model descriptions and simulations 107 

2.1 NASA LIS 108 

 The LIS system is a land surface hydrology digital twin environment, with the development 109 

led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center. Because of 110 

its extensible and flexible software infrastructure, LIS allows customized land DA systems and 111 

multiple LSMs to be integrated, assembled, and reconfigured easily using shared plugins and 112 

standard interfaces. Currently, LIS is the land component for several Earth system models, such 113 

as the NASA Unified WRF (NU-WRF) model, and the key component of several land DA system 114 

(LDAS) such as Global LDAS (GLDAS), North American LDAS (NLDAS), the Famine Early 115 

Warning Systems Network (FEWS NET) LDAS (FLDAS), and the operational land DA analysis 116 

environment at the U.S. Air Force Weather (Eylander et al., 2022). 117 

 Specifically, the LIS software suite consists of three main components: (1) Land Data 118 

Toolkit (LDT; Arsenault et al., 2018), which handles the data-related requirements of LIS 119 

including land surface parameter processing, geospatial transformations, consistency checks, data 120 

assimilation preprocessing, and forcing bias correction; (2) Land Information System (LIS), which 121 

is the modeling system that encapsulates land and hydrological models, DA algorithms, 122 

optimization and uncertainty estimation algorithms, and high performance computing (HPC) 123 

support; and (3) Land Verification Toolkit (LVT; Kumar et al., 2012), which is a model 124 
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verification and benchmarking environment that can be used for enabling rapid prototyping and 125 

evaluation of model simulations by comparing against a large suite of in-situ, remote sensing, and 126 

model and reanalysis data products. More details can be found at the LIS website: 127 

https://lis.gsfc.nasa.gov/ (last access: November 25, 2024). In this study, we use the LIS version 128 

7.5.2 (latest version at the time of this work) coupled with Noah-MP in benchmark simulations 129 

and the LVT for model evaluation. 130 

 131 

2.2 Integration of refactored Noah-MPv5.0 with LIS  132 

 In this study, we couple the LIS system with the refactored community Noah-MPv5.0 133 

model through the GitHub submodule mechanism to streamline the synchronization of Noah-MP 134 

between the community version and the LIS version, which will simplify future code updates and 135 

maintenance of Noah-MP within LIS. Compared to the Noah-MPv4.0.1 model in LIS, the 136 

community Noah-MPv5.0 model includes several important updates and new features: (1) 137 

improved modularization with modern Fortran code structures, (2) new hierarchical model data 138 

types and structures, (3) enhanced subroutine interface and calling workflow based on the 139 

modularization and new data types, (4) new self-explanatory model variable and module names, 140 

and (5) model bug fixes and new physics schemes. The key bug fixes include updates in vegetation 141 

properties (e.g., bug fixes in vegetation fraction scaling treatments) and processes (e.g., bug fixes 142 

in canopy wind absorption parameters) as well as snowpack processes. The new physics schemes 143 

include improved parameters related to various snowpack processes, a new wet-bulb temperature-144 

based snow-rain partitioning scheme, a new snow meltwater retention process, a new dynamic 145 

irrigation scheme, updated crop growth parameters, a new tile drainage scheme, a new canopy heat 146 

storage treatment, additional runoff schemes, and new capabilities to control soil process timestep. 147 

More details of Noah-MPv5.0 features can be found in He et al. (2023b). The detailed Noah-MP 148 

physics and formulations are described in He et al. (2023c). The major code changes from Noah-149 

MPv4.0.1 to Noah-MPv5.0 are described in the model release notes available at: 150 

https://github.com/NCAR/noahmp/blob/master/RELEASE_NOTES.md (last access: November 151 

25, 2024). The key components we modify to couple LIS and Noah-MPv5.0 are the LIS/Noah-MP 152 

land model driver interface to create new input/output variable mapping, and the LIS initialization 153 

and master driver parts to leverage new modularized Noah-MP code modules. By taking advantage 154 
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of the plugin and standard interfaces in LIS, the Noah-MPv5.0 model is also connected to other 155 

components of LIS, such as data assimilation, river routing, etc. 156 

 157 

2.3 LIS/Noah-MP benchmark simulations 158 

 We conduct and evaluate two sets of coupled LIS/Noah-MP benchmark simulations, 159 

including one set of regional simulations over the contiguous U.S. (CONUS) and one set of global 160 

simulations. Each set of the simulations includes one LIS/Noah-MPv4.0.1 simulation and one 161 

LIS/Noah-MPv5.0 simulation to compare their performance and quantify differences between 162 

versions. The regional simulations are conducted for 10 years (2013-2022) with a 5-year spin-up, 163 

which are driven by the hourly 0.125° North American Land Data Assimilation System (NLDAS-164 

2) atmospheric forcing data (i.e., precipitation, surface temperature, surface pressure, surface 165 

specific humidity, wind speed, downward surface shortwave and longwave radiation). More 166 

details of NLDAS-2 data are described in Xia et al. (2012). The global simulations are conducted 167 

for 5 years (2018-2022) with a 5-year spin-up, and are driven by the global hourly ~10-km U.S. 168 

Air Force (USAF) atmospheric forcing reanalysis data (Kemp et al., 2022). More details of the 169 

forcing data (formerly known as AGRMET, AGRiculture METeorology) are described in 170 

Eylander et al. (2022). For all the simulations, the static land type map is from the Moderate 171 

Resolution Imaging Spectroradiometer (MODIS) satellite data (Figure 1), while the MODIS 172 

monthly climatological (2000-2008) leaf area index (LAI) and stem area index (SAI) are used 173 

(Yang et al., 2011). The static soil type map is from the State Soil Geographic (STATSGO)/Food 174 

and Agriculture Organization (FAO) soil database (FAO, 1991). For both LIS/Noah-MPv4.0.1 and 175 

LIS/Noah-MPv5.0 simulations, we adopt the same default Noah-MP physics options (see 176 

Appendix Table A1), which have been commonly used in previous Noah-MP applications to 177 

produce skilled model performance (He et al., 2023b). Model evaluations for both the regional and 178 

global simulations are focused on the 5-year period of 2018-2022. 179 
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 180 

Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark 181 

simulations.  182 

 183 

3. Reference data for model evaluation 184 

 We use a suite of reference datasets to evaluate the LIS/Noah-MP simulations of key land 185 

surface variables over the globe and CONUS, including soil moisture, latent heat flux (LH), snow 186 

water equivalent (SWE), snow depth, snow cover fraction, and surface albedo. Specifically, for 187 

surface soil moisture, we use the global daily 36-km Soil Moisture Active Passive (SMAP) version 188 

8 Level 3 satellite data (O'Neill et al., 2021; https://nsidc.org/data/spl3smp/versions/8, last access: 189 

November 25, 2024). We also use the surface and root-zone soil moisture from the International 190 

Soil Moisture Network (ISMN) ground station hourly measurements (Dorigo et al., 2021; 191 

https://ismn.earth/en/, last access: November 25, 2024). The data quality control is done via LVT. 192 

For LH, we use the global 0.25° daily Global Land Evaporation Amsterdam Model (GLEAMv3.8a) 193 

reanalysis data (Miralles et al., 2011; https://www.gleam.eu/, last access: November 25, 2024). For 194 

SWE and snow depth, we use the daily 1-km NOAA National Weather Service's National 195 

Operational Hydrologic Remote Sensing Center (NOHRSC) Snow Data Assimilation System 196 

(SNODAS) data (Barrett, 2003; https://nsidc.org/data/g02158/, last access: November 25, 2024) 197 

and the global 0.1° ERA-5 land (ERA5-Land) reanalysis data (Muñoz-Sabater et al., 2021; 198 
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https://www.ecmwf.int/en/era5-land, last access: November 25, 2024). For snow cover fraction, 199 

we use the global daily 500-m MODIS Terra Snow Cover version 6 data (Hall and Riggs, 2016; 200 

https://nsidc.org/data/mod10a1/versions/6, last access: November 25, 2024). For surface albedo, 201 

we use the global daily 0.05° MODIS Terra/Aqua merged data (Schaaf and Wang, 2021; 202 

https://lpdaac.usgs.gov/products/mcd43c3v061/, last access: November 25, 2024). For model 203 

evaluation, we re-map the reference gridded datasets to the LIS/Noah-MP model grids or bilinearly 204 

interpolate model values to in-situ measurement locations via LVT, which will likely introduce 205 

uncertainties to model evaluations. We also note that those reference datasets have their own 206 

uncertainties, which may impact model evaluation results. 207 

 208 

4. Results and discussions 209 

4.1 Soil moisture 210 

 Figure 2 shows the global 5-year (2018-2022) mean surface soil moisture comparison 211 

between SMAP retrievals and LIS/Noah-MP simulations driven by the USAF forcing. Both 212 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 213 

distributions of surface soil moisture globally (Figures 2 and S1), with similar bias patterns. Both 214 

simulations tend to have negative biases over wet soil regimes (e.g., northern and eastern Canada, 215 

Amazon forests, northern Europe, tropical Africa, and southeast Asia) and positive biases over dry 216 

soil regimes (e.g., western US, west and east coasts of South America, southern and northern 217 

Africa, mid-latitudinal Eurasia, and Australia), partially caused by the USAF precipitation forcing 218 

bias except for northern and eastern Canada (Figure S2). We note that SMAP data quality is less 219 

reliable over regions with thick vegetation (e.g., Southeast US, Amazon rainforest, Congo Basin). 220 

The evapotranspiration (ET) biases caused by model deficiencies in plant hydraulics and root water 221 

uptake processes may also contribute to the soil moisture bias, as revealed by previous Noah-MP 222 

studies (Niu et al., 2020; Li et al., 2021). These global model bias patterns are consistent across all 223 

seasons (Figure S1). Due to the offset of positive and negative biases across different regions, the 224 

global annual mean model bias is small (0.003 m3/m3 for LIS/Noah-MPv4.0.1 and 0.008 m3/m3 225 

for LIS/Noah-MPv5.0). Overall, LIS/Noah-MPv5.0 shows consistently higher surface soil 226 

moisture than LIS/Noah-MPv4.0.1 but the difference is small (Figure 2f), which is expected since 227 

there is no direct soil physics update but changes in vegetation processes (e.g., vegetation fraction 228 

scaling treatments) from Noah-MPv4.0.1 to Noah-MPv5.0. 229 
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 230 

 231 

Figure 2. Surface soil moisture (m3/m3) comparison between SMAP retrievals and LIS/Noah-MP 232 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) SMAP data, (b) 233 

LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases 234 

(model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences 235 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 236 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value 237 

is also provided in the lower right of each panel. See Figure S1 for seasonal plots. 238 

 239 

 Further model evaluation with the ISMN global in-situ measurements indicates systematic 240 

model overestimates of surface soil moisture at most sites (Figure 3), particularly over the CONUS 241 

and Europe that have very dense measurement networks, with global mean biases of 0.062 m3/m3 242 

and 0.067 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. This bias pattern 243 

is consistent with the SMAP comparisons (Figure 2). LIS/Noah-MPv5.0 shows slightly (0.005 244 

m3/m3) higher mean surface soil moisture than LIS/Noah-MPv4.0.1 across all sites (Figure 3f). 245 

We further compute the soil moisture anomaly correlation between the model simulations and 246 

ISMN observations following Navari et al. (2024), where the anomaly is computed as daily 247 

anomaly by subtracting monthly mean values. Both models show similar anomaly correlation 248 

spatial patterns (Figure 3g-h), with a mean value of ~0.53 and higher values in North America and 249 

Europe than in Asia and Africa. Compared to the surface soil moisture, the root-zone soil moisture 250 

shows similar spatial distributions (Figure 4a-c), model bias patterns (Figure 4d-e), and anomaly 251 

correlation patterns (Figure 4g-i) across most ISMN sites, with global annual mean biases of 0.039 252 

m3/m3 and 0.050 m3/m3 for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. 253 
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 254 

 255 

Figure 3. Surface soil moisture (m3/m3) comparison between ISMN station measurements and 256 

LIS/Noah-MP simulations driven by USAF forcing globally averaged during 2018-2022: (a) 257 

ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-258 

MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f) 259 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-260 

MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and (i) differences 261 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value 262 

is also provided in the lower right of each panel. 263 

 264 
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 265 

Figure 4. Same as Figure 3, but for root-zone soil moisture (m3/m3) evaluation. 266 

 267 

Over the CONUS, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by 268 

the NLDAS-2 forcing capture the spatial distribution of SMAP surface soil moisture with similar 269 

spatial bias patterns (Figure 5), which show model underestimates over wet soil regimes (e.g., the 270 

northwest coast and southeast and northeast U.S.) and overestimates over dry soil regimes (e.g., 271 

western and central U.S.). This is consistent with the global evaluation albeit using a different 272 

forcing dataset. LIS/Noah-MPv5.0 also produces consistently but slightly (0.007 m3/m3) higher 273 

soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2 forcing (Figure 5f), similar to the 274 

results using the USAF forcing, revealing a robust difference pattern between the two model 275 

versions. The comparison with ISMN surface soil moisture data over the CONUS shows similar 276 

model bias patterns with those evaluated against SMAP (Figure 6), except for the northwest coast 277 

and Florida, where ISMN indicates dry soil regimes that are opposite to SMAP. This points to the 278 

importance of considering observational data uncertainty in model evaluation. The CONUS mean 279 

biases across all ISMN sites are 0.041 m3/m3 and 0.047 m3/m3 for LIS/Noah-MPv4.0.1 and 280 

LIS/Noah-MPv5.0, respectively. The CONUS mean anomaly correlation is about 0.6 for both 281 

models (Figure 6g-h), with slightly lower values particularly over many western U.S. sites for 282 

LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 (Figure 6i). The model bias pattern of root-zone soil 283 

moisture is similar to that of surface soil moisture but with larger underestimates at some central 284 

U.S. sites (Figure 7). 285 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 12 

 286 

 287 

Figure 5. Same as Figure 2, but for evaluation of LIS/Noah-MP simulations driven by the 288 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 289 

 290 

 291 

Figure 6. Same as Figure 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture 292 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 293 

 294 
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 295 

Figure 7. Same as Figure 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture 296 

(m3/m3) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 297 

 298 

4.2 Latent heat flux 299 

 Figure 8 shows the global 5-year (2018-2022) mean latent heat (LH) flux comparison 300 

between GLEAM data and LIS/Noah-MP simulations driven by the USAF forcing. Both 301 

LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal LH 302 

distributions with similar bias patterns (Figures 8 and S3). The model LH biases are generally 303 

consistent with the surface soil moisture bias patterns (Figure 2), with negative (positive) LH 304 

biases over regions with negative (positive) soil moisture biases, except for northern Eurasia and 305 

northwest North America (Alaska and west Canada). Although LIS/Noah-MPv5.0 has a slightly 306 

higher soil moisture than LIS/Noah-MPv4.0.1 (Figures 2-4), it shows a lower LH (by up to ~15 307 

W/m2) across most non-polar regions with the largest difference in the tropics, which reduces the 308 

global mean LH bias from 0.99 W/m2 (LIS/Noah-MPv4.0.1) to -0.39 W/m2 (LIS/Noah-MPv5.0). 309 

This difference in the two Noah-MP versions is mainly due to the code updates related to 310 

vegetation properties (e.g., bug fixes in vegetation fraction scaling treatments) and processes (e.g., 311 

bug fixes in canopy wind absorption parameters), which alters ET and LH. The minor LH 312 

difference (up to ~5 W/m2) between the two model versions over the Antarctica and Greenland is 313 

mainly caused by updates in the glacier scheme that uses consistent snowpack physics as other 314 

land snowpacks in LIS/Noah-MPv5.0.  315 
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 316 

 317 

Figure 8. Latent heat flux (W/m2) comparison between the GLEAM data and LIS/Noah-MP 318 

simulations driven by USAF forcing globally averaged during 2018-2022: (a) GLEAM3.8a data, 319 

(b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 320 

biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f) 321 

differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with 322 

statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global 323 

mean value is also provided in the lower right of each panel. See Figure S3 for seasonal plots. 324 

 325 

Further CONUS evaluation of model simulations driven by the NLDAS-2 forcing also 326 

reveals that model LH bias patterns (Figure 9) generally follow the soil moisture bias patterns 327 

(Figure 5) except for many western U.S. mountainous regions, where both model simulations have 328 

very small LH biases albeit with overestimated soil moisture (Figures 5-7). Compared to 329 

LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows a lower LH over southwest U.S. and eastern U.S. 330 

by up to about 10 W/m2, which degrades the CONUS-mean model bias from -0.21 W/m2 to -2.30 331 

W/m2. We note that GLEAM is a model-based reanalysis data that has its own uncertainty. 332 

 333 
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 334 

Figure 9. Same as Figure 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-335 

2 forcing over the CONUS averaged during 2018-2022. 336 

 337 

4.3 Snow water equivalent (SWE) 338 

 Figure 10 shows the global 5-year (2018-2022) mean SWE comparison for seasonal 339 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 340 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal 341 

SWE distributions with similar bias patterns (Figures 10 and S4). Both simulations tend to have 342 

much lower SWE (by up to 50 mm) in the Himalayas and west Canada than ERA5-Land, with 343 

slightly less SWE in eastern Russia, partially driven by overestimated surface temperature (Section 344 

4.7). Both simulations have higher SWE than ERA5-Land in most other mid-latitude and high-345 

latitude snowpacks, mainly driven by overestimated precipitation (Figure S2) and underestimated 346 

surface temperature (Figure S8). The global annual mean SWE biases are -10.1 mm and -13.2 mm 347 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. Overall, LIS/Noah-MPv5.0 shows 348 

lower SWE than LIS/Noah-MPv4.0.1, particularly in spring when differences reach up to 25 mm 349 

(Figures 10f and S4) due to the updated snow cover and compaction parameters (He et al., 2021) 350 

that reduces snow cover fraction (Section 4.5) and enhances snow ablation particularly in spring 351 

through the positive surface albedo feedback. We note that the ERA5-Land SWE data also has 352 

uncertainties, which tends to overestimate SWE over mountainous areas (Monteiro and Morin, 353 

2023). 354 

 355 
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 356 

Figure 10. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by 357 

USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1 358 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 359 

ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 360 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 361 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value 362 

is also provided in the lower right of each panel. See Figure S4 for seasonal plots. 363 

 364 

 The CONUS-wide regional evaluation between SNODAS and LIS/Noah-MP simulations 365 

driven by the NLDAS-2 forcing indicates large SWE underestimates by up to 50 mm or more in 366 

high-elevation mountains in the western U.S. and very small biases across other CONUS regions 367 

(Figure 11), mainly due to the underestimated mountain precipitation in NLDAS-2 (He et al., 368 

2019). The CONUS mean SWE biases are -4.2 mm and -5.0 mm for LIS/Noah-MPv4.0.1 and 369 

LIS/Noah-MPv5.0, respectively, with slightly lower SWE in LIS/Noah-MPv5.0 than LIS/Noah-370 

MPv4.0.1 over most CONUS snowpacks (Figure 11f). 371 

 372 

 373 
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Figure 11. Same as Figure 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-374 

MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022. 375 

 376 

4.4 Snow depth 377 

Figure 12 shows the global 5-year (2018-2022) mean snow depth comparison for seasonal 378 

snowpack between ERA5-Land data and LIS/Noah-MP simulations driven by the USAF forcing. 379 

Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations reproduce the spatial and seasonal 380 

snow depth distributions with similar bias patterns (Figures 12 and S5). The snow depth bias 381 

pattern generally follows the SWE bias pattern (Figure 10) with global annual mean biases of 382 

~0.06 m for both simulations, except for the lower snow depth over some regions with higher SWE 383 

in northern Canada and northern Russia compared to ERA5-Land. The snow depth difference 384 

(global mean of 0.003 m) between LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small (Figure 385 

12f).  386 

 387 

 388 

Figure 12. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations 389 

driven by USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-390 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 391 

minus ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences 392 

between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically 393 

significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value 394 

is also provided in the lower right of each panel. See Figure S5 for seasonal plots. 395 

 396 
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 The CONUS-wide regional snow depth evaluation between SNODAS and LIS/Noah-MP 397 

simulations driven by the NLDAS-2 forcing also reveals a similar bias pattern (Figure 13) as the 398 

SWE evaluation, with largely underestimated snow depth over most western U.S. high mountains 399 

due to the underestimated SWE. The CONUS mean snow depth biases are -0.013 m and -0.015 m 400 

for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively, with very minor differences 401 

between the two simulations (Figure 13f). 402 

 403 

 404 

Figure 13. Same as Figure 12, but for snow depth (m) comparison between SNODAS and 405 

LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 406 

2018-2022. 407 

 408 

4.5 Snow cover fraction 409 

Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and 410 

seasonal snow cover distributions, they systematically overestimate snow cover globally relative 411 

to MODIS observations (Figures 14 and S6). This high bias in snow cover is particularly 412 

outstanding considering the underestimated SWE and snow depth (Figures 10 and 12), which has 413 

been a long-standing problem in Noah-MP (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). 414 

Specifically, LIS/Noah-MPv4.0.1 tends to overestimate snow cover across the global snowpack 415 

by up to 0.3 with a global mean bias of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover 416 

overestimate particularly in northern high-latitudes and the Tibetan Plateau, which effectively 417 

reduces the global mean bias to 0.07. This bias reduction is attributable to the updated snow cover 418 

parameters in LIS/Noah-MPv5.0 (He et al., 2021). However, LIS/Noah-MPv5.0 still 419 

systematically overestimates snow cover over most mid-latitude and high-latitude snowpacks, 420 
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which suggests the need for improved snowpack physics in Noah-MP (see Section 5 for 421 

discussion). 422 

 423 

 424 

Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations 425 

driven by the USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-426 

MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model 427 

minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 428 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 429 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value is also 430 

provided in the lower right of each panel. See Figure S6 for seasonal plots. 431 

 432 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 433 

driven by the NLDAS-2 forcing also reveals a consistently high bias in snow cover in LIS/Noah-434 

MPv4.0.1, particularly over western U.S. mountains, with a CONUS mean bias of 0.055 (Figure 435 

15). LIS/Noah-MPv5.0 effectively removes the snow cover overestimates in snowpacks outside 436 

high-elevation mountains in the western U.S., which halves the CONUS mean bias. The remaining 437 

snow cover overestimate in western U.S. high mountains, which notably correspond to the regions 438 

with underestimated SWE and snow depth (Figures 11 and 13), needs further investigation. 439 

 440 
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 441 

Figure 15.  Same as Figure 14, but for evaluation of LIS/Noah-MP simulations driven by the 442 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 443 

 444 

4.6 Surface albedo 445 

Figure 16 shows the global 5-year (2018-2022) mean surface albedo comparison between 446 

MODIS and LIS/Noah-MP simulations driven by the USAF forcing. Both LIS/Noah-MPv4.0.1 447 

and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal surface albedo distributions 448 

with similar bias patterns (Figures 16 and S7). LIS/Noah-MPv4.0.1 shows consistently 449 

overestimated surface albedo over most global regions by up to 0.05 or more, except for significant 450 

underestimates in the Sahara Desert and Antarctica which dominate the global mean bias (-0.02). 451 

This bias pattern is consistent across different seasons (Figure S7). Compared to LIS/Noah-452 

MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of surface albedo across mid-latitudes 453 

and high-latitudes due to lower snow cover (Section 4.5), which reduces the high bias of surface 454 

albedo particularly in the midlatitudes (Figure 16). The remaining albedo overestimates in 455 

LIS/Noah-MPv5.0 in the mid-latitude and high-latitude snowpacks are partially caused by the 456 

overestimated snow cover (Figure 14e) and also likely by the soil and vegetation albedo 457 

uncertainties. The systematic surface albedo underestimates in the Sahara Desert, Antarctica, and 458 

Greenland further indicate model biases in the background albedo for desert soil and glacier 459 

ice/snow albedo. 460 

 461 
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 462 

Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by 463 

USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1 464 

simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus 465 

MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between 466 

LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant 467 

differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value is also 468 

provided in the lower right of each panel. See Figure S7 for seasonal plots. 469 

 470 

The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations 471 

driven by the NLDAS-2 forcing also reveals a consistently high bias in surface albedo in 472 

LIS/Noah-MPv4.0.1 across the CONUS, except in some parts of southwest US (Figure 17), with 473 

a CONUS mean bias of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean albedo bias to 474 

0.023 due to improved snow cover simulations (Figures 15f and 17f). The remaining albedo 475 

overestimates in the western U.S. is partially due to the snow cover bias (Figure 15e) and snow 476 

albedo bias (He et al., 2019; Abolafia-Rosenzweig et al., 2022). The albedo overestimates in the 477 

rest of CONUS may be related to the model uncertainty in background soil and vegetation albedo 478 

(see Section 5 for discussion).  479 

 480 
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 481 

Figure 17. Same as Figure 16, but for evaluation of LIS/Noah-MP simulations driven by the 482 

NLDAS-2 forcing over the CONUS averaged during 2018-2022. 483 

 484 

5. Discussions for model improvements 485 

 The evaluation of global and regional benchmark simulations (Section 4) reveals several 486 

important Noah-MP model uncertainties and deficiencies, which calls for future model 487 

improvements.  488 

First, the model biases in soil moisture and LH (Sections 4.1 and 4.2) partially reflect the 489 

inadequate representation of plant hydraulics and root schemes and/or too shallow soil column 490 

configuration (e.g., in the Amazon), which have also been highlighted by a few previous studies 491 

(e.g., Niu et al., 2020; Li et al., 2021; Bieri et al., 2024). Recently, Li et al. (2021) developed a new 492 

whole-plant hydraulics scheme for Noah-MP with observation-constrained parameters (Sun et al., 493 

2024), which largely improves simulations of ET and terrestrial water storage (TWS) compared to 494 

the default soil hydraulics scheme in Noah-MP. Other studies (e.g., Niu et al., 2020; Bieri et al., 495 

2024) developed dynamic root uptake schemes in Noah-MP that improve modeled soil moisture, 496 

ET, and TWS. These model updates have not been included in the community Noah-MPv5.0, 497 

which needs to be done in the future. Another possible model deficiency that could result in the 498 

LH bias is the canopy turbulence scheme. Noah-MP uses the Monin–Obukhov (M–O) similarity 499 

theory to compute momentum and heat exchange coefficients above and through the canopy, 500 

which however does not account for the canopy-induced turbulence in the roughness sublayer 501 

(RSL) and hence fails above and within dense forests (Bonan et al., 2018). Abolafia-Rosenzweig 502 

et al. (2021) implemented and evaluated a unified RSL turbulence scheme throughout the canopy 503 

in an earlier Noah-MP version, which demonstrates the potential of improving modeled surface 504 

heat fluxes. We are currently working on a comprehensive assessment of this RSL canopy 505 
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turbulence scheme in Noah-MPv5.0 across global FLUXNET sites. However, we note that the 506 

satellite soil moisture data has large uncertainties over dense forests. In addition, the input soil 507 

texture data could also impact the modeled soil moisture and hence ET. Li et al. (2024) recently 508 

developed a global 1-km high-quality datasets for key land surface parameters (including soil 509 

texture), and we plan to test the effect of using this new dataset in Noah-MP simulations in our 510 

next step. 511 

 Second, the model biases in snowpack, including SWE, snow depth, and snow cover, 512 

reveal inadequate treatments of snow physics. For example, the SWE underestimates over 513 

midlatitude mountains (e.g., the Himalayas and western U.S. high mountains) could be caused by 514 

the snow ablation bias in the model, in addition to the precipitation and temperature forcing 515 

uncertainty (Section 4.3). He et al. (2021) found that Noah-MP tends to melt snow faster than 516 

observations in some western US mountain areas, likely due to wind and solar radiation forcing 517 

biases and/or model deficiencies in above-snowpack turbulence, canopy radiative transfer, and 518 

snow albedo. Recently, Lin et al. (2025) coupled Noah-MPv5.0 with a widely used physical snow 519 

albedo scheme, SNICAR-ADv3 (Flanner et al., 2021; He et al., 2024a), and found improved snow 520 

albedo relative to the default semi-empirical snow albedo scheme in Noah-MP. This snow albedo 521 

physics update will be included in the next Noah-MP major version release. The snow depth bias 522 

is not only driven by the SWE bias but also by uncertainty in snow compaction processes. A recent 523 

study (Abolafia-Rosenzweig et al., 2024b) enhanced the Noah-MP snow compaction 524 

parameterization constrained by in-situ measurements across ~800 SNOTEL sites in the western 525 

U.S., which is currently being transferred to the Noah-MPv5.0 526 

(https://github.com/NCAR/noahmp/pull/148; last access: November 24, 2024). In addition, a new 527 

flexible framework was recently developed to couple the LSMs (including Noah-MPv4.0.1) in LIS 528 

with a physical snow model, Crocus, which shows promising improvements in modeling snow 529 

depth and SWE (Navari et al., 2024). The systematically overestimated snow cover fraction in 530 

Noah-MP is a long-standing model problem, which has been investigated by several studies over 531 

different mountain regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). A number of 532 

improvements in the model snow cover parameterization have been proposed for the Tibetan 533 

Plateau (Jiang et al., 2020; Zhou et al., 2023) and the western U.S. (Abolafia-Rosenzweig et al., 534 

2024c). These solutions, however, need to be tested for global applications. 535 
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 Third, the model biases in surface albedo, particularly over the Sahara Desert and glaciers, 536 

suggest possible deficiencies in background desert soil albedo and glacier albedo. Currently, Noah-537 

MPv5.0 assumes a uniform medium soil color everywhere, whereas using a spatially-varying soil 538 

color map (Lawrence and Chase, 2007) tends to reduce Noah-MP surface albedo particularly over 539 

the desert (Michael Barlage, personal communication), which will be tested in NoahMPv5.0 540 

together with the aforementioned Li et al. (2024) global 1-km input datasets. To improve glacier 541 

modeling, Eidhammer et al. (2021) coupled the Crocus snow/ice model with Noah-MP within the 542 

WRF-Hydro framework, which reproduces the observed glacier surface albedo and mass balance 543 

in Norwegian glaciers. Future Noah-MP model improvements need to also focus on glacier regions, 544 

which were less studied in previous Noah-MP applications. In addition, vegetation albedo (and 545 

canopy radiative transfer) may also contribute to the surface albedo biases in Noah-MP, which 546 

however lacks systematic assessments in the literature and hence needs more future investigations. 547 

 548 

6. Conclusions 549 

 In this study, we integrated the refactored community Noah-MPv5.0 model with the NASA 550 

LIS system (version 7.5.2) through the GitHub submodule mechanism to streamline the 551 

synchronization, development, and maintenance of Noah-MP within LIS and to enhance the 552 

interoperability and applicability of both models. The GitHub submodule mechanism also allows 553 

for more rapid implementation of bug fixes as well as new versions of Noah-MP (such as including 554 

the new physics detailed in Section 5) into the LIS software framework. We systematically 555 

evaluated multi-year (2018-2022) global and regional (CONUS) LIS/Noah-MP benchmark 556 

simulations driven by the USAF and NLDAS-2 atmospheric forcing, respectively, for a set of key 557 

land surface variables. 558 

 Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the 559 

spatial and seasonal distributions of observed surface and root-zone soil moisture, LH, SWE, snow 560 

depth, snow cover, and surface albedo, with similar bias patterns. For surface and root-zone soil 561 

moisture, model simulations tend to have negative biases over wet soil regimes and positive biases 562 

over dry soil regimes, with slightly higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-563 

MPv4.0.1 across most regions. Due to the offset of positive and negative soil moisture biases 564 

across different regions, the global mean biases of both models are relatively small.  565 
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For LH, the model bias patterns generally follow those of soil moisture, with negative 566 

(positive) LH biases over areas with negative (positive) soil moisture biases across most global 567 

regions. Although LIS/Noah-MPv5.0 has a slightly higher soil moisture than LIS/Noah-MPv4.0.1, 568 

it shows a lower LH across most non-polar regions, which reduces the global mean LH bias from 569 

0.99 W/m2 (LIS/Noah-MPv4.0.1) to -0.39 W/m2 (LIS/Noah-MPv5.0). 570 

For snowpack conditions, the model SWE bias patterns are dominated by the precipitation 571 

and temperature forcing uncertainties, with large SWE underestimates in the Himalayas, west 572 

Canada, and western U.S. mountains and overestimates in most other mid-latitude and high-573 

latitude snowpacks. The SWE biases are similar for both models, with slightly larger 574 

underestimates in LIS/Noah-MPv5.0 (global mean bias of -13.2 mm) than LIS/Noah-MPv4.0.1 575 

(global mean bias of -10.1 mm). The model bias patterns of snow depth generally follow those of 576 

SWE, with a global mean bias of ~0.06 m for both simulations. For snow cover, LIS/Noah-577 

MPv4.0.1 has a systematic large overestimate across the globe, even over regions with 578 

underestimated SWE, which is a long-standing Noah-MP problem. LIS/Noah-MPv5.0 with 579 

updated snow cover parameters effectively reduces the snow cover overestimates globally, 580 

decreasing the global mean bias from 0.11 to 0.07.  581 

For surface albedo, both models show widespread overestimates over most mid-latitude 582 

and high-latitude regions partially due to the snow cover overestimate, and significant 583 

underestimates in the Sahara Desert, Greenland, and Antarctica, which dominate the global mean 584 

bias. Because of the reduced snow cover, LIS/Noah-MPv5.0 shows consistently lower surface 585 

albedo than LIS/Noah-MPv4.0.1, which degrades the global mean bias from -0.018 to -0.033. 586 

 The model evaluation in this study reveals several important Noah-MP uncertainties and 587 

deficiencies and motivates future improvements in model processes/components including plant 588 

hydraulics and dynamic root uptake, canopy turbulence and interaction with snowpack, input soil 589 

texture and color data, snow cover and albedo, glacier ice, and vegetation albedo (canopy radiative 590 

transfer). 591 

 592 

 593 

 594 

 595 

 596 
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 597 

 598 

Appendix 599 

Table A1. Default Noah-MP physics options used in this study 600 

Noah-MP Physics Option Description 
dynamic vegetation option 4 use table LAI and maximum vegetation fraction 
rain-snow partition option 1 Jordan (1991) scheme 

soil moisture factor for stomatal 
resistance option 1 Noah (soil moisture) (Ek et al., 2003) 

ground resistance option 1 Sakaguchi and Zeng (2009) scheme 

surface drag coefficient option 1 Monin-Obukhov (M-O) Similarity Theory 
(Brutsaert, 1982) 

canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996) 
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993) 

canopy radiation transfer option 3 two-stream applied to vegetated fraction (Niu 
and Yang, 2004) 

snow/soil temperature time 
scheme option 1 semi-implicit; flux top boundary condition (Niu 

et al., 2011) 
snow thermal conductivity option 1 Stieglitz scheme (Yen,1965) 

lower boundary of soil 
temperature option 2 Deep soil boundary temperature read from input 

file (Niu et al., 2011) 
soil supercooled liquid water 

option 1 No iteration (Niu and Yang, 2006) 

runoff option 3 Schaake scheme (Schaake et al., 1996) 

frozen soil permeability option 1 linear effects, more permeable (Niu and Yang, 
2006) 

soil configuration option 1 use input dominant soil texture 
glacier treatment option 1 include phase change of glacier ice 

tile drainage option 0 No tile drainage 
irrigation option 0 No irrigation 

dynamic crop model option 0 No dynamic crop model 
 601 

 602 

Code and data availability 603 

1. The data and scripts produced in this study is available at 604 

https://doi.org/10.5281/zenodo.14567219  (He et al., 2025). 605 

2. The LIS/Noah-MPv5.0 model code produced and used in this study is available at 606 

https://doi.org/10.5281/zenodo.14567646 (He et al., 2024b). 607 

 608 

 609 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 27 

Author contribution 610 

CH, JW, and SK proposed research idea. CH performed technical coding and model coupling with 611 

help of DM. TL performed model simulations and evaluations with contribution from CH, DM, 612 

and RA. CH drafted the paper with contribution from TL, DM, RA, JW, and SK. 613 

 614 

 615 

Competing interests 616 

The authors declare that they have no conflict of interest. 617 

 618 

 619 

Acknowledgements 620 

This study was supported by the NASA Grant #80NSSC24K0121. The NSF National Center for 621 

Atmospheric Research (NCAR) is a major facility sponsored by the National Science Foundation 622 

(NSF) under Cooperative Agreement #1852977. We would like to acknowledge computing 623 

support from the Casper system (https://ncar.pub/casper) provided by the NSF National Center for 624 

Atmospheric Research (NCAR), sponsored by the National Science Foundation. Any opinions, 625 

findings, conclusions, or recommendations expressed in this publication are those of the authors 626 

and do not necessarily reflect the views of the National Science Foundation or NASA. 627 

 628 

 629 

References 630 

Abolafia-Rosenzweig, R., He, C., and Chen, F.: Winter and spring climate explains a large portion 631 
of interannual variability and trend in western U.S. summer fire burned area, Environ. Res. 632 
Lett., 17, 054030, https://doi.org/10.1088/1748-9326/ac6886, 2022.  633 

Abolafia‐Rosenzweig, R., He, C., McKenzie Skiles, S., Chen, F., & Gochis, D. (2022). Evaluation 634 
and optimization of snow albedo scheme in Noah‐MP land surface model using in situ spectral 635 
observations in the Colorado Rockies. Journal of Advances in Modeling Earth 636 
Systems, 14(10), e2022MS003141. 637 

Abolafia-Rosenzweig, R., He, C., Chen, F., Ikeda, K., Schneider, T., and Rasmussen, R.: High 638 
resolution forecasting of summer drought in the western United States, Water Resour. Res., 639 
59, e2022WR033734, https://doi.org/10.1029/2022WR033734, 2023.  640 

Abolafia‐Rosenzweig, R., He, C., Chen, F., Zhang, Y., Dugger, A., Livneh, B., & Gochis, D.: 641 
Evaluating Noah‐MP simulated runoff and snowpack in heavily burned Pacific‐Northwest 642 
snow‐dominated catchments. Journal of Geophysical Research: Atmospheres, 129(9), 643 
e2023JD039780, 2024a. 644 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 28 

Abolafia‐Rosenzweig, R., He, C., Chen, F., & Barlage, M.: Evaluating and enhancing snow 645 
compaction process in the Noah‐MP land surface model. Journal of Advances in Modeling 646 
Earth Systems, 16, e2023MS003869. https://doi.org/10.1029/ 2023MS003869, 2024b. 647 

AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., ... & 648 
Sadegh, M. (2020). Climate extremes and compound hazards in a warming world. Annual 649 
Review of Earth and Planetary Sciences, 48(1), 519-548. 650 

Arsenault, K.R., S.V. Kumar, J.V. Geiger, S. Wang, E. Kemp, D.M. Mocko, H. Kato Beaudoing, 651 
A. Getirana, M. Navari, B. Li, J. Jacob, J. Wegiel, and C.D. Peters-Lidard: The Land surface 652 
Data Toolkit (LDT v7.2) - a data fusion environment for land data assimilation systems. 653 
Geosci. Model Dev., 11, 3605-3621, doi:10.5194/gmd-2018-63, 2018. 654 

Arsenault, K. R., Shukla, S., Hazra, A., Getirana, A., McNally, A., Kumar, S. V., Koster, R. D., 655 
Peters-Lidard, C. D., Zaitchik, B. F., Badr, H., Jung, H. C., Narapusetty, B., Navari, M., Wang, 656 
S., Mocko, D. M., Funk, C., Harrison, L., Husak, G. J., Adoum, A., Galu, G., Magadzire, T., 657 
Roningen, J., Shaw, M., Eylander, J., Bergaoui, K., McDonnell, R. A., and Verdin, J. P.: Better 658 
Ad- vance Warnings of Drought, B. Am. Meteorol. Soc., 101, 899– 903, 2020.  659 

Barlage, M., Chen, F., Rasmussen, R., Zhang, Z., and Miguez- Macho, G.: The importance of 660 
scale-dependent groundwa- ter processes in land-atmosphere interactions over the cen- tral 661 
United States, Geophys. Res. Lett., 48, e2020GL092171, 662 
https://doi.org/10.1029/2020GL092171, 2021.  663 

Barrett, A.: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation 664 
System (SNODAS) Products at NSIDC. NSIDC Special Report 11. Boulder, CO USA: 665 
National Snow and Ice Data Center. 19 pp. 2003. 666 

Benson, D. O., & Dirmeyer, P. A. (2023). The soil moisture–surface flux relationship as a factor 667 
for extreme heat predictability in subseasonal to seasonal forecasts. Journal of Climate, 36(18), 668 
6375-6392 669 

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., ... & Harding, R. J. 670 
(2011). The Joint UK Land Environment Simulator (JULES), model description–Part 1: 671 
energy and water fluxes. Geoscientific Model Development, 4(3), 677-699. 672 

Bieri, C. A., Dominguez, F., Miguez-Macho, G., & Fan, Y.: Implementing deep soil and dynamic 673 
root uptake in Noah-MP (v4.5): Impact on Amazon dry-season transpiration. EGUsphere, 1-674 
34, 2024. 675 

Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., De Kauwe, M. G., Lawrence, D. M., Melton, 676 
J. R., Pongratz, J., Turton, R. H., Yoshimura, K., and Yuan, H.: Advances in land surface 677 
modelling, Curr. Clim. Change Rep., 7, 45–71, https://doi.org/10.1007/s40641-021-00171-5, 678 
2021  679 

Bonan, G. B.: A land surface model (LSM version 1.0) for ecological, hydrological, and 680 
atmospheric studies: Technical description and user’s guide, NCAR Tech. Note, NCAR/TN‐681 
417+STR, 150 pp., Natl. Cent. for Atmos. Res., Boulder, Colorado, 1996.  682 

Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., & Burakowski, 683 
E. A.: Modeling canopy-induced turbulence in the Earth system: A unified parameterization 684 
of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). 685 
Geoscientific Model Development, 11, 1467–1496. https://doi.org/10.5194/gmd-11-1467-686 
2018, 2018. 687 

Brutsaert, W.: Evaporation into the Atmosphere: Theory, History, and Applications, Springer, 688 
Dordrecht, 299, http://dx.doi.org/10.1007/978-94-017-1497-6, 1982. 689 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 29 

Chen, F., Janjić, Z., & Mitchell, K. (1997). Impact of atmospheric surface-layer parameterizations 690 
in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer 691 
Meteorology, 85, 391-421. 692 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al.: 693 
Physiographically‐sensitive mapping of temperature and precipitation across the 694 
conterminous United States. International Journal of Climatology, 28(15), 2031–2064. https:// 695 
doi.org/10.1002/joc.1688, 2008. 696 

Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.: Biosphere-Atmosphere Transfer 697 
Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model, NCAR Tech. 698 
Note, NCAR/TN-387+STR, 80 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., 699 
https://doi.org/10.5065/D67W6959, 1993.  700 

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., et al.: The 701 
international soil moisture network: Serving Earth system science for over a decade. 702 
Hydrology and Earth System Sciences, 25(11), 5749–5804. https://doi.org/10.5194/hess-25-703 
5749-2021, 2021. 704 

Eidhammer, T., Booth, A., Decker, S., Li, L., Barlage, M., Gochis, D., Rasmussen, R., Melvold, 705 
K., Nesje, A., and Sobolowski, S.: Mass balance and hydrological modeling of the 706 
Hardangerjøkulen ice cap in south-central Norway, Hydrol. Earth Syst. Sci., 25, 4275–4297, 707 
https://doi.org/10.5194/hess-25-4275-2021, 2021. 708 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., ... & Tarpley, J. D.: 709 
Implementation of Noah land surface model advances in the National Centers for 710 
Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: 711 
Atmospheres, 108(D22), 2003. 712 

Eylander, J., Kumar, S., Peters-Lidard, C., Lewiston, T., Franks, C., & Wegiel, J.: History and 713 
Development of the USAF Agriculture Meteorology Modeling System and Resulting USAF–714 
NASA Strategic Partnership. Weather and Forecasting, 37(12), 2293-2312, 2022. 715 

FAO: The digitized soil map of the world, World Soil Resource Rep. 67, FAO, Rome, 1991. 716 
Fisher, R. A., & Koven, C. D.: Perspectives on the future of land surface models and the challenges 717 

of representing complex terrestrial systems. Journal of Advances in Modeling Earth 718 
Systems, 12(4), e2018MS001453, 2020. 719 

Flanner, M. G., Arnheim, J. B., Cook, J. M., Dang, C., He, C., Huang, X., et al.: SNICAR‐ADv3: 720 
A community tool for modeling spectral snow albedo. Geoscientific Model Development, 721 
14(12), 7673–7704. https://doi.org/10.5194/gmd‐14‐7673‐2021, 2021. 722 

Hall, D. K. and G. A. Riggs: MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. 723 
Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active 724 
Archive Center. doi: http://dx.doi.org/10.5067/MODIS/MOD10A1.006, 2016. 725 

Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger, C. M., Canadell, J. 726 
G., and Cuntz, M.: A new version of the CABLE land surface model (Subversion revision 727 
r4601) incorporating land use and land cover change, woody vegetation demography, and a 728 
novel optimisation-based approach to plant coordination of photosynthesis, Geosci. Model 729 
Dev., 11, 2995–3026, https://doi.org/10.5194/gmd-11-2995-2018, 2018. 730 

Hazra, A., McNally, A., Slinski, K., Arsenault, K. R., Shukla, S., Getirana, A., Jacob, J. P., 731 
Sarmiento, D. P., Peters-Lidard, C., Kumar, S. V., and Koster, R. D.: NASA’s NMME- based 732 
S2S hydrologic forecast system for food insecurity early warning in southern Africa, J. 733 
Hydrol., 617, 129005, https://doi.org/10.1016/j.jhydrol.2022.129005, 2023.  734 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 30 

He, C., Chen, F., Barlage, M., Liu, C., Newman, A., Tang, W., Ikeda, K., and Rasmussen, R.: Can 735 
convection-permitting modeling provide decent precipitation for offline high-resolution 736 
snowpack simulations over mountains, J. Geophys. Res.-Atmos., 124, 12631–12654, 737 
https://doi.org/10.1029/2019JD030823, 2019.  738 

He, C., F. Chen, R. Abolafia-Rosenzweig, K. Ikeda, C. Liu, and R. Rasmussen: What causes the 739 
unobserved early-spring snowpack ablation in convection-permitting WRF modeling over 740 
Utah mountains?, J. Geophys. Res.-Atmos, 126(22), e2021JD035284, 741 
https://doi.org/10.1029/2021JD035284, 2021. 742 

He, C., Chen, F., Barlage, M., Yang, Z. L., Wegiel, J. W., Niu, G. Y., ... & Niyogi, D. Enhancing 743 
the community Noah-MP land model capabilities for Earth sciences and applications. Bulletin 744 
of the American Meteorological Society, 104(11), E2023-E2029, 2023a. 745 

He, C., Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D., Cabell, R., Schneider, T., 746 
Rasmussen, R., Niu, G.-Y., Yang, Z.-L., Niyogi, D., and Ek, M.: Modernizing the open-source 747 
community Noah with multi-parameterization options (Noah-MP) land surface model 748 
(version 5.0) with enhanced modularity, interoperability, and applicability, Geosci. Model 749 
Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, 2023b. 750 

He, C., P. Valayamkunnath, M. Barlage, F. Chen, D. Gochis, R. Cabell, T. Schneider, R. 751 
Rasmussen, G.-Y. Niu, Z.-L. Yang, D. Niyogi, and M. Ek: The Community Noah-MP Land 752 
Surface Modeling System Technical Description Version 5.0, (No. NCAR/TN-575+STR). 753 
doi:10.5065/ew8g-yr95, 2023c. 754 

He, C., Flanner, M., Lawrence, D. M., & Gu, Y.: New features and enhancements in community 755 
land model (CLM5) snow albedo modeling: Description, sensitivity, and evaluation. Journal 756 
of Advances in Modeling Earth Systems, 16, e2023MS003861. https://doi. 757 
org/10.1029/2023MS003861, 2024a. 758 

He, C., Lin, T.-S., and Mocko, D.: LIS/Noah-MPv5.0 coupled source code. 759 
Zenodo. https://doi.org/10.5281/zenodo.14567646, 2024b. 760 

He, C., Lin, T.-S., and Mocko, D.: LIS/Noah-MP model benchmark and evaluation dataset [Data 761 
set]. Zenodo. https://doi.org/10.5281/zenodo.14880096, 2025. 762 

Jiang, Y., Chen, F., Gao, Y., He, C., Barlage, M., and Huang, W.: As- sessment of uncertainty 763 
sources in snow cover simulation in the Tibetan Plateau, J. Geophys. Res.-Atmos., 125, 764 
e2020JD032674, https://doi.org/10.1029/2020JD032674, 2020.  765 

Jordan, R.: A one‐dimensional temperature model for a snow cover, Spec. Rep. 91–16, Cold Reg. 766 
Res. and Eng. Lab., U.S. Army Corps. of Eng., Hanover, N. H., 1991. 767 

Kemp, E., J.W. Wegiel, S.V. Kumar, J. V. Geiger, D.M. Mocko, J. Jacob, and C.D. Peters-Lidard: 768 
A NASA-Air Force precipitation analysis for near-real-time Ooerations, J. Hydrometeor., 769 
23(6), 965-989, doi:10.1175/JHM-D-21-0228.1, 2022. 770 

Koster, G. K. Walker, Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature 771 
Forecasts. J. Hydrometeorol. 16, 1456–1465, 2015. 772 

Kumar, S.V., C.D. Peters-Lidard, Y. Tian, P.R. Houser, J. Geiger, S. Olden, L. Lighty, J.L. 773 
Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E.F. Wood, and J. Sheffield: Land 774 
Information System - An interoperable framework for high resolution land surface modeling. 775 
Environ. Modeling & Software, 21, 1402-1415, doi:10.1016/j.envsoft.2005.07.004, 2006. 776 

Kumar, S. V., Reichle, R. H., Peters-Lidard, C. D., Koster, R. D., Zhan, X., Crow, W. T., ... & 777 
Houser, P. R.: A land surface data assimilation framework using the land information system: 778 
Description and applications. Advances in Water Resources, 31(11), 1419-1432, 2008a. 779 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 31 

Kumar, S.V., C.D. Peters-Lidard, J.L. Eastman, and W.-K. Tao: An integrated high resolution 780 
hydrometeorological modeling testbed using LIS and WRF. Environ. Modelling & Software, 781 
23(2), 169-181, doi:10.1016/j.envsoft.2007.05.012, 2008b. 782 

Kumar, S.V., C.D. Peters-Lidard, J. Santanello, K. Harrison, Y. Liu, and M. Shaw: Land surface 783 
Verification Toolkit (LVT) - A generalized framework for land surface model evaluation. 784 
Geosci. Model Dev., 5, 869-886, doi:10.5194/gmd-5-869-a, 2012. 785 

Kumar, S. V., Zaitchik, B. F., Peters-Lidard, C. D., Rodell, M., Reichle, R., Li, B., ... & Ek, M.: 786 
Assimilation of gridded GRACE terrestrial water storage estimates in the North American 787 
Land Data Assimilation System. Journal of Hydrometeorology, 17(7), 1951-1972, 2016. 788 

Kumar, S. V., et al.: Assimilation of remotely sensed Leaf Area Index into the Noah-MP land 789 
surface model: Impacts on water and carbon fluxes and states over the Continental U.S. 790 
Journal of Hydrometeorology, 20(7), 1359–1377. https://doi.org/10.1175/jhm-d-18-0237.1, 791 
2019. 792 

Kumar, S.V., D.M. Mocko, C. Vuyovich, and C.D. Peters-Lidard: Impact of surface albedo 793 
assimilation on snow estimation. Remote Sens., 12(4), 645, doi:10.3390/rs12040645, 2020. 794 

Kumar, S. V., Holmes, T., Andela, N., Dharssi, I., Vinodku- mar, Hain, C., Peters-Lidard, C., 795 
Mahanama, S. P., Arsenault, K. R., Nie, W., and Getirana, A.: The 2019–2020 Aus- tralian 796 
drought and bushfires altered the partitioning of hydrological fluxes, Geophys. Res. Lett., 48, 797 
e2020GL091411, https://doi.org/10.1029/2020GL091411, 2021.  798 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., ... & 799 
Zeng, X. (2019). The Community Land Model version 5: Description of new features, 800 
benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth 801 
Systems, 11(12), 4245-4287. 802 

Lawrence, P. J., & Chase, T. N.: Representing a new MODIS consistent land surface in the 803 
Community Land Model (CLM 3.0). Journal of Geophysical Research: 804 
Biogeosciences, 112(G1), 2007. 805 

Li, J., Chen, F., Lu, X., Gong, W., Zhang, G., and Gan, Y.: Quantifying contributions of 806 
uncertainties in physical parameterization schemes and model parameters to overall errors in 807 
Noah-MP dynamic vegetation modeling, J. Adv. Model. Earth Sy., 12, e2019MS001914, 808 
https://doi.org/10.1029/2019MS001914, 2020.  809 

Li, L., Yang, Z.-L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., et al.: 810 
Representation of plant hydraulics in the Noah-MP land surface model: Model development 811 
and multiscale evaluation. Journal of Advances in Modeling Earth Systems, 13, 812 
e2020MS002214. https://doi. org/10.1029/2020MS002214, 2021. 813 

Li, L., Bisht, G., Hao, D., & Leung, L. R.: Global 1 km land surface parameters for kilometer-814 
scale Earth system modeling. Earth System Science Data, 16(4), 2007-2032, 2024. 815 

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model 816 
of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 817 
14415–14428, https://doi.org/10.1029/94JD00483, 1994. 818 

Lin, T.-S., C. He, R. Abolafia-Rosenzweig, F. Chen, W. Wang, M. Barlage, and D. Gochis: 819 
Improved snow albedo evolution in Noah-MP land surface model coupled with a physical 820 
snowpack radiative transfer scheme, Journal of Hydrometeorology, 26 (2), 185-200, 821 
doi:10.1175/JHM-D-24-0082.1, 2025 822 

Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A. F., Chen, F., Chen, L., 823 
Clark, M., Dai, A., Dudhia, J., Eidhammer, T., Gochis, D., Gutmann, E., Kurkute, S., Li, Y., 824 
Thompson, G., and Yates, D.: Continental- scale convection-permitting modeling of the 825 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 32 

current and fu- ture climate of North America, Clim. Dynam., 49, 71–95, 826 
https://doi.org/10.1007/s00382-016-3327-9, 2017.  827 

Liu, Y., Peters‐Lidard, C. D., Kumar, S. V., Arsenault, K. R., & Mocko, D. M. (2015). Blending 828 
satellite‐based snow depth products with in situ observations for streamflow predictions in the 829 
Upper Colorado River Basin. Water resources research, 51(2), 1182-1202. 830 

Miralles, D.G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, A.J. 831 
Global land-surface evaporation estimated from satellite-based observations, Hydrology and 832 
Earth System Sciences, 15, 453–469, doi: 10.5194/hess-15-453-2011, 2011. 833 

Monteiro, D., & Morin, S.: Multi-decadal analysis of past winter temperature, precipitation and 834 
snow cover data in the European Alps from reanalyses, climate models and observational 835 
datasets. The Cryosphere, 17(8), 3617-3660, 2023. 836 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., 837 
Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, 838 
M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: 839 
A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data,13, 840 
4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 841 

Navari, M., Kumar, S., Wang, S., Geiger, J., Mocko, D. M., Arsenault, K. R., & Kemp, E. M.: 842 
Enabling advanced snow physics within land surface models through an interoperable model‐843 
physics coupling framework. Journal of Advances in Modeling Earth Systems, 16(4), 844 
e2022MS003236, 2024. 845 

Nie, W., S.V. Kumar, A. Getirana, L. Zhao, M. Wrzesien, G. Konapala, S. Ahmad, K. Locke, T. 846 
Holmes, B. Loomis, M. Rodell: Nonstationarity in the global terrestrial water cycle and its 847 
interlinkages in the Anthropocene, Proceedings of the National Academy of 848 
Sciences, 121(45), e2403707121, doi:10.1074/pnas.2403707121, 2024 849 

Niu, G.‐Y., and Yang, Z.‐L.: The effects of canopy processes on snow surface energy and mass 850 
balances, J. Geophys. Res.-Atmos., 109, D23111, doi:10.1029/2004JD004884, 2004. 851 

Niu, G.‐Y., and Yang, Z.‐L.: Effects of frozen soil on snowmelt runoff and soil water storage at a 852 
continental scale, J. Hydrometeorol., 7, 937–952, doi:10.1175/JHM538.1, 2006. 853 

Niu, G.Y., Yang, Z.L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., 854 
Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model 855 
with multiparameterization options (Noah-MP): 1. Model description and evaluation with 856 
local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, 857 
https://doi.org/10.1029/2010JD015139, 2011. 858 

Niu, G. Y., Fang, Y. H., Chang, L. L., Jin, J., Yuan, H., & Zeng, X.: Enhancing the Noah‐MP 859 
ecosystem response to droughts with an explicit representation of plant water storage supplied 860 
by dynamic root water uptake. Journal of Advances in Modeling Earth Systems, 12(11), 861 
e2020MS002062, 2020. 862 

O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R. & Chaubell, J.: SMAP L3 863 
Radiometer Global Daily 36 km EASE-Grid Soil Moisture. (SPL3SMP, Version 8). [Data 864 
Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active 865 
Archive Center. https://doi.org/10.5067/OMHVSRGFX38O, 2021. 866 

Oleson, K., Dai, Y., Bonan, B., Bosilovichm, M., Dickinson, R., Dirmeyer, P., Hoffman, F., 867 
Houser, P., Levis, S., Niu, G. Y., Thornton, P., Vertenstein, M., Yang, Z. L., and Zeng, X.: 868 
Technical description of the Community Land Model (CLM), NCAR Tech. Note, NCAR/TN‐869 
461+STR, 174 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., 2004. 870 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 33 

Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., ... & Sheffield, 871 
J.: High-performance Earth system modeling with NASA/GSFC’s Land Information 872 
System. Innovations in Systems and Software Engineering, 3, 157-165, 2007. 873 

Rasmussen, R., Chen, F., Liu, C., Ikeda, K., Prein, A., Kim, J.-H., Schneider, T., Dai, A., Gochis, 874 
D., Dugger, A., Zhang, Y., Jaye, A., Dudhia, J., He, C., Harrold, M., Xue, L., Chen, S., New- 875 
man, A., Dougherty, E., Abolafia-Rosenzweig, R., Lybarger, N., Viger, R., Lesmes, D. P., 876 
Skalak, K., Brakebill, J. W., Clline, D., Dunne, K., Rasmussen, K., and Miguez-Macho, G.: 877 
CONUS404: The NCAR-USGS 4-km long-term regional hydroclimate reanal- ysis over the 878 
CONUS, B. Am. Meteorol. Soc., E1382–E1408, https://doi.org/10.1175/BAMS-D-21-0326.1, 879 
2023.  880 

Sakaguchi, K., and Zeng, X.: Effects of soil wetness, plant litter, and under‐canopy atmospheric 881 
stability on ground evaporation in the Community Land Model (CLM3. 5), J. Geophys. Res.-882 
Atmos., 114(D1), 2009. 883 

Santanello, J. A., Kumar, S. V., Peters-Lidard, C. D., & Lawston, P. M. (2016). Impact of soil 884 
moisture assimilation on land surface model spinup and coupled land–atmosphere 885 
prediction. Journal of Hydrometeorology, 17(2), 517-540. 886 

Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K. and Chen, F.: Simple water balance model 887 
for estimating runoff at different spatial and temporal scales, J. Geophys. Res.-Atmos., 101, 888 
7461–7475, doi:10.1029/95JD02892, 1996. 889 

Schaaf, C., and Wang, Z.: MODIS/Terra+Aqua BRDF/Albedo Albedo Daily L3 Global 0.05Deg 890 
CMG V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 891 
Accessed 2024-11-19 from https://doi.org/10.5067/MODIS/MCD43C3.061, 2021. 892 

Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V., Hegerl, G., ... & 893 
Zwiers, F. W. (2017). Understanding, modeling and predicting weather and climate extremes: 894 
Challenges and opportunities. Weather and climate extremes, 18, 65-74. 895 

Sun, S., Li, L., Yang, Z. L., Wang, G., McDowell, N. G., Matheny, A. M., ... & Wang, D.: Refining 896 
water and carbon fluxes modeling in terrestrial ecosystems via plant hydraulics 897 
integration. Agricultural and Forest Meteorology, 359, 110256, 2024. 898 

Wu, D., Peters-Lidard, C., Tao, W. K., & Petersen, W. (2016). Evaluation of NU-WRF rainfall 899 
forecasts for IFloodS. Journal of hydrometeorology, 17(5), 1317-1335. 900 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., ... & Mocko, D. (2012). 901 
Continental‐scale water and energy flux analysis and validation for the North American Land 902 
Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of 903 
model products. Journal of Geophysical Research: Atmospheres, 117(D3). 904 

Xu, T., Chen, F., He, X., Barlage, M., Zhang, Z., Liu, S., and He, X.: Improve the performance of 905 
the noah-MP-crop model by jointly assimilating soil moisture and vegetation phenol- ogy data, 906 
J. Adv. Model. Earth Sy., 13, e2020MS002394, https://doi.org/10.1029/2020MS002394, 907 
2021.  908 

Xue, L., Doan, Q. V., Kusaka, H., He, C., & Chen, F.: Insights into urban heat island and heat 909 
waves synergies revealed by a Land‐Surface‐Physics‐Based Downscaling method. Journal of 910 
Geophysical Research: Atmospheres, 129(13), e2023JD040531, 2024 911 

Xue L., Q.-V. Doan, H. Kusaka, C. He, and F. Chen: Land-Surface-Physics-Based Downscaling 912 
versus Conventional Dynamical Downscaling for High-Resolution Urban Climate Change 913 
Information: The Case Study of Two Cities, Urban Climate, 59, 914 
102228, https://doi.org/10.1016/j.uclim.2024.102228, 2025 915 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 34 

Yang, Z.-L., Niu, G.-Y., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Longuevergne, L., 916 
Manning, K., Niyogi, D., Tewari, M., Xia, Y., 2011. The community Noah land surface model 917 
with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. 918 
Geophys. Res. 116, D12110. https://doi.org/10.1029/2010JD015140 919 

Yen, Y. C.: Effective thermal conductivity and water vapor diffusivity of naturally compacted 920 
snow, J. Geophys. Res.-Atmos., 70(8), 1821-1825, 1965. 921 

Zhang, Z., Li, Y., Chen, F., Harder, P., Helgason, W., Famiglietti, J., Valayamkunnath, P., He, C., 922 
and Li, Z.: Developing spring wheat in the Noah-MP land surface model (v4.4) for growing 923 
season dynamics and responses to temperature stress, Geosci. Model Dev., 16, 3809–3825, 924 
https://doi.org/10.5194/gmd-16- 3809-2023, 2023.  925 

Zhang, Z., C. He, F. Chen, G. Miguez-Macho, C. Liu, and R. Rasmussen: US Corn Belt enhances 926 
regional precipitation recycling, Proc. Natl. Acad. Sci. U.S.A. 122 (1) 927 
e2402656121, https://www.pnas.org/doi/10.1073/pnas.2402656121, 2025 928 

Zhou, X., Ding, B., Yang, K., Pan, J., Ma, X., Zhao, L., ... & Shi, J.: Reducing the Cold Bias of 929 
the WRF Model Over the Tibetan Plateau by Implementing a Snow Coverage‐Topography 930 
Relationship and a Fresh Snow Albedo Scheme. Journal of Advances in Modeling Earth 931 
Systems, 15(9), e2023MS003626, 2023. 932 

 933 

https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025
c© Author(s) 2025. CC BY 4.0 License.


