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16  Abstract
17 We integrate the refactored community Noah-MP version 5.0 model with the NASA Land
18  Information System (LIS) version 7.5.2 to streamline the synchronization, development, and
19  maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. We
20 evaluate and compare 5-year (2018-2022) global and regional benchmark simulations of
21 LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for a set of key land surface variables. Both models
22 capture the spatial and seasonal distributions of observed soil moisture, latent heat (LH), snow
23 water equivalent (SWE), snow depth, snow cover, and surface albedo, with similar bias patterns.
24 Both models tend to have negative soil moisture bias over wet soil regimes and positive bias over
25  dry soil regimes, with slightly higher (< ~0.01 m3/m? for global mean) soil moisture in LIS/Noah-
26 MPv5.0 than LIS/Noah-MPv4.0.1 across most regions. The model bias patterns of LH overall
27  follow those of soil moisture, while LIS/Noah-MPv5.0 has a lower LH across most non-polar
28  regions than LIS/Noah-MPv4.0.1, which reduces the global mean LH bias from 0.99 W/m? to -
29 0.39 W/m?. The model SWE bias patterns are dominated by the precipitation and temperature
30 forcing uncertainties, with slightly lower SWE values in LIS/Noah-MPv5.0 (global mean bias of
31 -13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of -10.1 mm). The model bias patterns of
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32 snow depth generally follow those of SWE. LIS/Noah-MPv4.0.1 consistently overestimates snow
33 cover globally with a mean bias of 0.11, while LIS/Noah-MPv5.0 effectively reduces the
34  overestimates across the global snowpacks with a mean bias of 0.07 because of updated snow
35  cover parameters. Both models show widespread overestimates of surface albedo over mid-latitude
36  and high-latitude regions but significant underestimates in the Sahara Desert and Antarctica. This
37  study reveals possible model deficiencies, motivates future improvements in coupled canopy-
38  snowpack-soil processes and input soil data, and points to the importance of considering
39  observational and forcing data uncertainties in model evaluation.

40

41

42 1. Introduction

43 Land processes play a profound role in the Earth and climate systems through altering
44  surface water and energy balances and feedback to the atmosphere (Fisher and Koven, 2020; Blyth
45 et al., 2021). Earth’s land surface provides important boundary conditions for atmospheric
46  processes and climate/weather predictions particularly at the subseasonal-to-seasonal (S2S) time
47  scale (Koster and Walker, 2015; Benson and Dirmeyer, 2023). Furthermore, as climate changes,
48 increasing climate/weather extremes (e.g., drought, flood, heatwave, and fire) and food-water
49  security issues (e.g., agricultural production and irrigation management) are happening at the land
50 surface, triggering key crises for the society (Sillmann et al., 2017; AghaKouchak et al., 2020). To
51 tackle these critical land-related environmental issues, accurate land modeling systems are needed.
52 There have been substantial efforts in the past decades to develop and improve various land
53  modeling systems (e.g., Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997; Ek et al.,
54  2003; Oleson et al., 2010; Best et al., 2011; Niu et al., 2011; Haverd et al., 2018). Among them,
55  the NASA Land Information System (LIS) is a widely used, established open-source framework
56  for high performance land surface and terrestrial hydrology modeling as well as data assimilation
57 (DA) of satellite and ground-based observations (Kumar et al., 2006; Peters-Lidard et al., 2007;
58  Kumar et al., 2008a). The LIS system integrates different land surface models (LSMs), satellite
59 and ground observations, and advanced computing and data management tools, to enable an
60 interoperable environment that is applicable across different spatial and temporal scales. Various
61  model developments and applications using LIS have been conducted in the past decade, such as

62  coupling with atmospheric models to improve weather predictions (Kumar et al., 2008b; Wu et al.,
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63 2016), DA of observed vegetation, snow, terrestrial water storage, albedo, and soil conditions to
64  improve land surface modeling (Liu et al., 2015; Santanello et al., 2016; Kumar et al., 2016; Kumar
65 etal., 2019; Kumar et al., 2020), and applications for hydrological predictions (Arsenault et al.,
66  2020), food security (Hazra et al., 2023), and land analysis (Nie et al., 2024).

67 LIS allows the use of an ensemble of LSMs, such as Noah (Chen et al., 1997; Ek et al.,
68  2003), Noah-MP (Niu et al., 2011), CLM (Oleson et al., 2010), VIC (Liang et al., 1994), JULES
69 (Bestetal,2011), and CABLE (Haverd et al., 2018). Among them, Noah-MP is one of the most
70  commonly used state-of-the-art LSMs in the world (He et al., 2023a). Built upon the Noah LSM,
71 Noah-MP has significant enhancements in representations of canopy-snow-soil-hydrology
72 processes and interactions as well as capabilities of modeling human activity impacts (e.g., crop
73 dynamics, irrigation dynamics, tile drainage, and urbanization). The multi-parameterization
74 options of Noah-MP further allow for uncertainty analysis and model performance
75  optimization/calibration based on multi-physics model ensembles (Li et al., 2020). Noah-MP has
76 been serving as a key land component of various research and operational weather and
77  hydroclimate models, such as the NOAA Unified Forecast System (UFS), the Weather Research
78  and Forecasting (WRF) model, the U.S. National Water Model (NWM), the Model for Prediction
79  Across Scales (MPAS), the Korean Integrated Model (KIM), and the Chinese Global-to-Regional
80 Integrated Forecast System (GRIST). Because of its advantages, Noah-MP has been applied in
81  numerous applications, including high-resolution climate modeling (Liu et al., 2017; Rasmussen
82 et al,, 2023), vegetation and soil DA (Kumar et al., 2019; Xu et al., 2021), climate extremes
83  (Arsenault et al., 2020; Kumar et al., 2021; Abolafia-Rosenzweig et al., 2022, 2023, 2024a),
84  snowpack and hydrology (He et al., 2019; Jiang et al., 2020; Hazra et al., 2023), agriculture and
85  groundwater (Barlage et al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue et al., 2024,
86  2025).

87 Recently, the community Noah-MP has undergone a substantial code modernization effort
88  (version 5.0) to improve its modularity and interoperability (He et al., 2023b), with many physics
89  updates and bug fixes compared to the versions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP
90 versions in the current LIS (version 7.5.2) were implemented by manually replicating the Noah-
91  MP source code and updating LIS/Noah-MP interface and drivers, which does not allow easy
92  model upgrades and hence leads to a long-delayed version update compared to the community

93  Noah-MP. Thus, in this effort, we describe the streamlining of the development and maintenance
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94  of Noah-MP in LIS to enable the seamless integration between LIS and the community Noah-MP
95  version to further enhance the interoperability and applicability of both models. Specifically, we
96 couple the refactored community Noah-MPv5.0 with the LIS framework through the GitHub
97  submodule mechanism accompanied by developing a new LIS/Noah-MP interface, which
98  provides a direct, automatic link between the two models’ source codes. This integration will allow
99  easy code updates, synchronization, and maintenance for the coupled LIS/Noah-MP framework.
100 The second goal of this study is to evaluate and compare global and regional benchmark
101 simulations between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land surface conditions.
102 Such systematic benchmarking is needed to examine the realism of LIS/Noah-MP model
103  simulations, quantify the gaps between modeling and observations, and identify key processes for
104  future model enhancements. This study is a step toward establishing a ‘scorecard” type of practice
105  for LSMs.
106
107 2. Model descriptions and simulations
108 2.1 NASA LIS
109 The LIS system is a land surface hydrology digital twin environment, with the development
110  led by the Hydrological Sciences Laboratory at NASA's Goddard Space Flight Center. Because of
111 its extensible and flexible software infrastructure, LIS allows customized land DA systems and
112 multiple LSMs to be integrated, assembled, and reconfigured easily using shared plugins and
113  standard interfaces. Currently, LIS is the land component for several Earth system models, such
114  as the NASA Unified WRF (NU-WRF) model, and the key component of several land DA system
115  (LDAS) such as Global LDAS (GLDAS), North American LDAS (NLDAS), the Famine Early
116  Warning Systems Network (FEWS NET) LDAS (FLDAS), and the operational land DA analysis
117  environment at the U.S. Air Force Weather (Eylander et al., 2022).
118 Specifically, the LIS software suite consists of three main components: (1) Land Data
119  Toolkit (LDT; Arsenault et al., 2018), which handles the data-related requirements of LIS
120  including land surface parameter processing, geospatial transformations, consistency checks, data
121  assimilation preprocessing, and forcing bias correction; (2) Land Information System (LIS), which
122 is the modeling system that encapsulates land and hydrological models, DA algorithms,
123 optimization and uncertainty estimation algorithms, and high performance computing (HPC)

124  support; and (3) Land Verification Toolkit (LVT; Kumar et al., 2012), which is a model
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125  verification and benchmarking environment that can be used for enabling rapid prototyping and
126  evaluation of model simulations by comparing against a large suite of in-situ, remote sensing, and
127 model and reanalysis data products. More details can be found at the LIS website:
128  https://lis.gsfc.nasa.gov/ (last access: November 25, 2024). In this study, we use the LIS version
129  7.5.2 (latest version at the time of this work) coupled with Noah-MP in benchmark simulations
130  and the LVT for model evaluation.

131

132 2.2 Integration of refactored Noah-MPv5.0 with LIS

133 In this study, we couple the LIS system with the refactored community Noah-MPv5.0
134  model through the GitHub submodule mechanism to streamline the synchronization of Noah-MP
135  between the community version and the LIS version, which will simplify future code updates and
136  maintenance of Noah-MP within LIS. Compared to the Noah-MPv4.0.1 model in LIS, the
137  community Noah-MPv5.0 model includes several important updates and new features: (1)
138  improved modularization with modern Fortran code structures, (2) new hierarchical model data
139  types and structures, (3) enhanced subroutine interface and calling workflow based on the
140  modularization and new data types, (4) new self-explanatory model variable and module names,
141 and (5) model bug fixes and new physics schemes. The key bug fixes include updates in vegetation
142 properties (e.g., bug fixes in vegetation fraction scaling treatments) and processes (e.g., bug fixes
143 in canopy wind absorption parameters) as well as snowpack processes. The new physics schemes
144  include improved parameters related to various snowpack processes, a new wet-bulb temperature-
145  based snow-rain partitioning scheme, a new snow meltwater retention process, a new dynamic
146  irrigation scheme, updated crop growth parameters, a new tile drainage scheme, a new canopy heat
147  storage treatment, additional runoff schemes, and new capabilities to control soil process timestep.
148  More details of Noah-MPv5.0 features can be found in He et al. (2023b). The detailed Noah-MP
149  physics and formulations are described in He et al. (2023c). The major code changes from Noah-
150 MPv4.0.1 to Noah-MPv5.0 are described in the model release notes available at:
151 https://github.com/NCAR/noahmp/blob/master/RELEASE NOTES.md (last access: November
152 25,2024). The key components we modify to couple LIS and Noah-MPv5.0 are the LIS/Noah-MP
153  land model driver interface to create new input/output variable mapping, and the LIS initialization

154  and master driver parts to leverage new modularized Noah-MP code modules. By taking advantage
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155  of the plugin and standard interfaces in LIS, the Noah-MPv5.0 model is also connected to other
156  components of LIS, such as data assimilation, river routing, etc.

157

158 2.3 LIS/Noah-MP benchmark simulations

159 We conduct and evaluate two sets of coupled LIS/Noah-MP benchmark simulations,
160 including one set of regional simulations over the contiguous U.S. (CONUS) and one set of global
161  simulations. Each set of the simulations includes one LIS/Noah-MPv4.0.1 simulation and one
162  LIS/Noah-MPv5.0 simulation to compare their performance and quantify differences between
163  versions. The regional simulations are conducted for 10 years (2013-2022) with a 5-year spin-up,
164  which are driven by the hourly 0.125° North American Land Data Assimilation System (NLDAS-
165  2) atmospheric forcing data (i.e., precipitation, surface temperature, surface pressure, surface
166  specific humidity, wind speed, downward surface shortwave and longwave radiation). More
167  details of NLDAS-2 data are described in Xia et al. (2012). The global simulations are conducted
168  for 5 years (2018-2022) with a 5-year spin-up, and are driven by the global hourly ~10-km U.S.
169  Air Force (USAF) atmospheric forcing reanalysis data (Kemp et al., 2022). More details of the
170  forcing data (formerly known as AGRMET, AGRiculture METeorology) are described in
171 Eylander et al. (2022). For all the simulations, the static land type map is from the Moderate
172 Resolution Imaging Spectroradiometer (MODIS) satellite data (Figure 1), while the MODIS
173 monthly climatological (2000-2008) leaf area index (LAI) and stem area index (SAI) are used
174  (Yang et al., 2011). The static soil type map is from the State Soil Geographic (STATSGO)/Food
175  and Agriculture Organization (FAO) soil database (FAO, 1991). For both LIS/Noah-MPv4.0.1 and
176  LIS/Noah-MPv5.0 simulations, we adopt the same default Noah-MP physics options (see
177  Appendix Table Al), which have been commonly used in previous Noah-MP applications to
178  produce skilled model performance (He et al., 2023b). Model evaluations for both the regional and
179  global simulations are focused on the 5-year period of 2018-2022.
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Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark

simulations.

3. Reference data for model evaluation

We use a suite of reference datasets to evaluate the LIS/Noah-MP simulations of key land
surface variables over the globe and CONUS, including soil moisture, latent heat flux (LH), snow
water equivalent (SWE), snow depth, snow cover fraction, and surface albedo. Specifically, for
surface soil moisture, we use the global daily 36-km Soil Moisture Active Passive (SMAP) version
8 Level 3 satellite data (O'Neill et al., 2021; https://nsidc.org/data/spl3smp/versions/8, last access:
November 25, 2024). We also use the surface and root-zone soil moisture from the International
Soil Moisture Network (ISMN) ground station hourly measurements (Dorigo et al., 2021;
https://ismn.earth/en/, last access: November 25, 2024). The data quality control is done via LVT.
For LH, we use the global 0.25° daily Global Land Evaporation Amsterdam Model (GLEAMv3.8a)
reanalysis data (Miralles et al., 2011; https://www.gleam.eu/, last access: November 25, 2024). For
SWE and snow depth, we use the daily 1-km NOAA National Weather Service's National
Operational Hydrologic Remote Sensing Center (NOHRSC) Snow Data Assimilation System
(SNODAS) data (Barrett, 2003; https://nsidc.org/data/g02158/, last access: November 25, 2024)
and the global 0.1° ERA-5 land (ERAS5-Land) reanalysis data (Mufioz-Sabater et al., 2021;

EGUsphere\
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199  https://www.ecmwf.int/en/era5-land, last access: November 25, 2024). For snow cover fraction,
200  we use the global daily 500-m MODIS Terra Snow Cover version 6 data (Hall and Riggs, 2016;
201  https://nsidc.org/data/mod10al/versions/6, last access: November 25, 2024). For surface albedo,
202  we use the global daily 0.05° MODIS Terra/Aqua merged data (Schaaf and Wang, 2021;
203  https://lpdaac.usgs.gov/products/med43c3v061/, last access: November 25, 2024). For model
204  evaluation, we re-map the reference gridded datasets to the LIS/Noah-MP model grids or bilinearly
205  interpolate model values to in-situ measurement locations via LVT, which will likely introduce
206  uncertainties to model evaluations. We also note that those reference datasets have their own
207  uncertainties, which may impact model evaluation results.

208

209 4. Results and discussions

210 4.1 Soil moisture

211 Figure 2 shows the global 5-year (2018-2022) mean surface soil moisture comparison
212 between SMAP retrievals and LIS/Noah-MP simulations driven by the USAF forcing. Both
213 LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal
214  distributions of surface soil moisture globally (Figures 2 and S1), with similar bias patterns. Both
215  simulations tend to have negative biases over wet soil regimes (e.g., northern and eastern Canada,
216  Amazon forests, northern Europe, tropical Africa, and southeast Asia) and positive biases over dry
217  soil regimes (e.g., western US, west and east coasts of South America, southern and northern
218  Africa, mid-latitudinal Eurasia, and Australia), partially caused by the USAF precipitation forcing
219  bias except for northern and eastern Canada (Figure S2). We note that SMAP data quality is less
220 reliable over regions with thick vegetation (e.g., Southeast US, Amazon rainforest, Congo Basin).
221 The evapotranspiration (ET) biases caused by model deficiencies in plant hydraulics and root water
222 uptake processes may also contribute to the soil moisture bias, as revealed by previous Noah-MP
223 studies (Niu et al., 2020; Li et al., 2021). These global model bias patterns are consistent across all
224  seasons (Figure S1). Due to the offset of positive and negative biases across different regions, the
225  global annual mean model bias is small (0.003 m?*/m? for LIS/Noah-MPv4.0.1 and 0.008 m?*/m?3
226 for LIS/Noah-MPv5.0). Overall, LIS/Noah-MPv5.0 shows consistently higher surface soil
227  moisture than LIS/Noah-MPv4.0.1 but the difference is small (Figure 2f), which is expected since
228  there is no direct soil physics update but changes in vegetation processes (e.g., vegetation fraction

229  scaling treatments) from Noah-MPv4.0.1 to Noah-MPv5.0.
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230

(a) SMAP

(f) Model (v5.0) - Model (v4.0.1)

231 -0.2

232 Figure 2. Surface soil moisture (m?/m?) comparison between SMAP retrievals and LIS/Noah-MP
233 simulations driven by USAF forcing globally averaged during 2018-2022: (a) SMAP data, (b)
234  LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases
235  (model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences
236 between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
237  significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value
238 is also provided in the lower right of each panel. See Figure S1 for seasonal plots.

239

240 Further model evaluation with the ISMN global in-situ measurements indicates systematic
241  model overestimates of surface soil moisture at most sites (Figure 3), particularly over the CONUS
242 and Europe that have very dense measurement networks, with global mean biases of 0.062 m3/m?3
243 and 0.067 m*/m? for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. This bias pattern
244  is consistent with the SMAP comparisons (Figure 2). LIS/Noah-MPv5.0 shows slightly (0.005
245  m’/m’) higher mean surface soil moisture than LIS/Noah-MPv4.0.1 across all sites (Figure 3f).
246 We further compute the soil moisture anomaly correlation between the model simulations and
247  ISMN observations following Navari et al. (2024), where the anomaly is computed as daily
248  anomaly by subtracting monthly mean values. Both models show similar anomaly correlation
249  spatial patterns (Figure 3g-h), with a mean value of ~0.53 and higher values in North America and
250  Europe than in Asia and Africa. Compared to the surface soil moisture, the root-zone soil moisture
251  shows similar spatial distributions (Figure 4a-c), model bias patterns (Figure 4d-¢), and anomaly
252 correlation patterns (Figure 4g-i) across most ISMN sites, with global annual mean biases of 0.039

253  m’/m? and 0.050 m*/m? for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv35.0, respectively.
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256  Figure 3. Surface soil moisture (m*/m®) comparison between ISMN station measurements and
257  LIS/Noah-MP simulations driven by USAF forcing globally averaged during 2018-2022: (a)
258  ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-
259  MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f)
260  differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-
261  MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and (i) differences
262 between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value
263  is also provided in the lower right of each panel.

264
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266  Figure 4. Same as Figure 3, but for root-zone soil moisture (m?*/m?) evaluation.
267
268 Over the CONUS, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by

269  the NLDAS-2 forcing capture the spatial distribution of SMAP surface soil moisture with similar
270  spatial bias patterns (Figure 5), which show model underestimates over wet soil regimes (e.g., the
271 northwest coast and southeast and northeast U.S.) and overestimates over dry soil regimes (e.g.,
272 western and central U.S.). This is consistent with the global evaluation albeit using a different
273 forcing dataset. LIS/Noah-MPv5.0 also produces consistently but slightly (0.007 m?/m?) higher
274  soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2 forcing (Figure 5f), similar to the
275  results using the USAF forcing, revealing a robust difference pattern between the two model
276  versions. The comparison with ISMN surface soil moisture data over the CONUS shows similar
277  model bias patterns with those evaluated against SMAP (Figure 6), except for the northwest coast
278  and Florida, where ISMN indicates dry soil regimes that are opposite to SMAP. This points to the
279  importance of considering observational data uncertainty in model evaluation. The CONUS mean
280  biases across all ISMN sites are 0.041 m3/m? and 0.047 m3/m? for LIS/Noah-MPv4.0.1 and
281  LIS/Noah-MPv5.0, respectively. The CONUS mean anomaly correlation is about 0.6 for both
282  models (Figure 6g-h), with slightly lower values particularly over many western U.S. sites for
283  LIS/Noah-MPv5.0 than LIS/Noah-MPv4.0.1 (Figure 61). The model bias pattern of root-zone soil
284  moisture is similar to that of surface soil moisture but with larger underestimates at some central

285  U.S. sites (Figure 7).

11
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288  Figure 5. Same as Figure 2, but for evaluation of LIS/Noah-MP simulations driven by the
289  NLDAS-2 forcing over the CONUS averaged during 2018-2022.

290
(a) ISMN 0.4 (b) Model (v4.0.1) : 0.4 (c) Model (v5.0) 0.4
0.2 0.2
0.0 0.0
(e) Model (v5.0) - ISMN
} ) AV
¥ -4 4|1 0.1 0.1
0.0 0.0 0.0
-0.1 -0.1 —0.1
1.0 1.0 0.04
0.8 0.8
0.02
0.6 0.6
0.00
0.4 0.4
-0.02
0.2 0.2
0.0 0.0 -0.04
291 : .

292 Figure 6. Same as Figure 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture
293 (m*/m?) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.
294
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296  Figure 7. Same as Figure 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture
297  (m*m?) driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.

298

299 4.2 Latent heat flux

300 Figure 8 shows the global 5-year (2018-2022) mean latent heat (LH) flux comparison
301 between GLEAM data and LIS/Noah-MP simulations driven by the USAF forcing. Both
302 LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal LH
303  distributions with similar bias patterns (Figures 8 and S3). The model LH biases are generally
304  consistent with the surface soil moisture bias patterns (Figure 2), with negative (positive) LH
305  Dbiases over regions with negative (positive) soil moisture biases, except for northern Eurasia and
306  northwest North America (Alaska and west Canada). Although LIS/Noah-MPv5.0 has a slightly
307  higher soil moisture than LIS/Noah-MPv4.0.1 (Figures 2-4), it shows a lower LH (by up to ~15
308  W/m?) across most non-polar regions with the largest difference in the tropics, which reduces the
309 global mean LH bias from 0.99 W/m? (LIS/Noah-MPv4.0.1) to -0.39 W/m? (LIS/Noah-MPv5.0).
310 This difference in the two Noah-MP versions is mainly due to the code updates related to
311  vegetation properties (e.g., bug fixes in vegetation fraction scaling treatments) and processes (e.g.,
312 bug fixes in canopy wind absorption parameters), which alters ET and LH. The minor LH
313 difference (up to ~5 W/m?) between the two model versions over the Antarctica and Greenland is
314 mainly caused by updates in the glacier scheme that uses consistent snowpack physics as other

315 land snowpacks in LIS/Noah-MPv5.0.
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318  Figure 8. Latent heat flux (W/m?) comparison between the GLEAM data and LIS/Noah-MP
319  simulations driven by USAF forcing globally averaged during 2018-2022: (a) GLEAM3.8a data,
320 (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1
321  Dbiases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f)
322 differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with
323  statistically significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global
324  mean value is also provided in the lower right of each panel. See Figure S3 for seasonal plots.
325

326 Further CONUS evaluation of model simulations driven by the NLDAS-2 forcing also
327 reveals that model LH bias patterns (Figure 9) generally follow the soil moisture bias patterns
328  (Figure 5) except for many western U.S. mountainous regions, where both model simulations have
329 very small LH biases albeit with overestimated soil moisture (Figures 5-7). Compared to
330 LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows a lower LH over southwest U.S. and eastern U.S.
331 by up to about 10 W/m?, which degrades the CONUS-mean model bias from -0.21 W/m? to -2.30
332 W/m?. We note that GLEAM is a model-based reanalysis data that has its own uncertainty.

333
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334
335  Figure 9. Same as Figure 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-

336 2 forcing over the CONUS averaged during 2018-2022.

337

338 4.3 Snow water equivalent (SWE)

339 Figure 10 shows the global S-year (2018-2022) mean SWE comparison for seasonal
340  snowpack between ERAS5-Land data and LIS/Noah-MP simulations driven by the USAF forcing.
341  Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal
342  SWE distributions with similar bias patterns (Figures 10 and S4). Both simulations tend to have
343  much lower SWE (by up to 50 mm) in the Himalayas and west Canada than ERAS5-Land, with
344  slightly less SWE in eastern Russia, partially driven by overestimated surface temperature (Section
345  4.7). Both simulations have higher SWE than ERAS5-Land in most other mid-latitude and high-
346 latitude snowpacks, mainly driven by overestimated precipitation (Figure S2) and underestimated
347  surface temperature (Figure S8). The global annual mean SWE biases are -10.1 mm and -13.2 mm
348  for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively. Overall, LIS/Noah-MPv5.0 shows
349  lower SWE than LIS/Noah-MPv4.0.1, particularly in spring when differences reach up to 25 mm
350 (Figures 10f and S4) due to the updated snow cover and compaction parameters (He et al., 2021)
351  that reduces snow cover fraction (Section 4.5) and enhances snow ablation particularly in spring
352  through the positive surface albedo feedback. We note that the ERAS5-Land SWE data also has
353  uncertainties, which tends to overestimate SWE over mountainous areas (Monteiro and Morin,
354  2023).

355
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356
357  Figure 10. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by

358  USAF forcing globally averaged during 2018-2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1
359  simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus
360 ERAS5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERAS5-Land), and (f) differences
361 between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
362  significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value
363  is also provided in the lower right of each panel. See Figure S4 for seasonal plots.

364

365 The CONUS-wide regional evaluation between SNODAS and LIS/Noah-MP simulations
366  driven by the NLDAS-2 forcing indicates large SWE underestimates by up to 50 mm or more in
367 high-elevation mountains in the western U.S. and very small biases across other CONUS regions
368  (Figure 11), mainly due to the underestimated mountain precipitation in NLDAS-2 (He et al.,
369 2019). The CONUS mean SWE biases are -4.2 mm and -5.0 mm for LIS/Noah-MPv4.0.1 and
370  LIS/Noah-MPv5.0, respectively, with slightly lower SWE in LIS/Noah-MPv5.0 than LIS/Noah-
371  MPv4.0.1 over most CONUS snowpacks (Figure 11f).

372
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374  Figure 11. Same as Figure 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-
375  MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during 2018-2022.
376

377 4.4 Snow depth

378 Figure 12 shows the global 5-year (2018-2022) mean snow depth comparison for seasonal
379  snowpack between ERAS5-Land data and LIS/Noah-MP simulations driven by the USAF forcing.
380 Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations reproduce the spatial and seasonal
381  snow depth distributions with similar bias patterns (Figures 12 and S5). The snow depth bias
382  pattern generally follows the SWE bias pattern (Figure 10) with global annual mean biases of
383  ~0.06 m for both simulations, except for the lower snow depth over some regions with higher SWE
384  in northern Canada and northern Russia compared to ERAS5-Land. The snow depth difference
385  (global mean of 0.003 m) between LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small (Figure
386 12f).

387
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389  Figure 12. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations
390 driven by USAF forcing globally averaged during 2018-2022: (a) ERAS5-Land data, (b) LIS/Noah-
391  MPv4.0.1 simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model
392  minus ERAS-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences
393  between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically
394  significant differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value
395 is also provided in the lower right of each panel. See Figure S5 for seasonal plots.

396
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397 The CONUS-wide regional snow depth evaluation between SNODAS and LIS/Noah-MP
398  simulations driven by the NLDAS-2 forcing also reveals a similar bias pattern (Figure 13) as the
399  SWE evaluation, with largely underestimated snow depth over most western U.S. high mountains
400  due to the underestimated SWE. The CONUS mean snow depth biases are -0.013 m and -0.015 m
401  for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively, with very minor differences
402  between the two simulations (Figure 13f).

403
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405  Figure 13. Same as Figure 12, but for snow depth (m) comparison between SNODAS and
406  LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during
407  2018-2022.

408

409 4.5 Snow cover fraction

410 Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the spatial and
411  seasonal snow cover distributions, they systematically overestimate snow cover globally relative
412 to MODIS observations (Figures 14 and S6). This high bias in snow cover is particularly
413  outstanding considering the underestimated SWE and snow depth (Figures 10 and 12), which has
414  been a long-standing problem in Noah-MP (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023).
415  Specifically, LIS/Noah-MPv4.0.1 tends to overestimate snow cover across the global snowpack
416 by up to 0.3 with a global mean bias of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover
417  overestimate particularly in northern high-latitudes and the Tibetan Plateau, which effectively
418  reduces the global mean bias to 0.07. This bias reduction is attributable to the updated snow cover
419  parameters in LIS/Noah-MPv5.0 (He et al, 2021). However, LIS/Noah-MPv5.0 still

420  systematically overestimates snow cover over most mid-latitude and high-latitude snowpacks,
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421  which suggests the need for improved snowpack physics in Noah-MP (see Section 5 for
422  discussion).

423

(b) Model (v4.0.1)

424
425  Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations

426  driven by the USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-
427  MPv4.0.1 simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model
428  minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between
429  LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant
430  differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value is also
431  provided in the lower right of each panel. See Figure S6 for seasonal plots.

432

433 The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations
434  driven by the NLDAS-2 forcing also reveals a consistently high bias in snow cover in LIS/Noah-
435  MPv4.0.1, particularly over western U.S. mountains, with a CONUS mean bias of 0.055 (Figure
436  15). LIS/Noah-MPv5.0 effectively removes the snow cover overestimates in snowpacks outside
437  high-elevation mountains in the western U.S., which halves the CONUS mean bias. The remaining
438  snow cover overestimate in western U.S. high mountains, which notably correspond to the regions
439  with underestimated SWE and snow depth (Figures 11 and 13), needs further investigation.

440
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441
442  Figure 15. Same as Figure 14, but for evaluation of LIS/Noah-MP simulations driven by the

443  NLDAS-2 forcing over the CONUS averaged during 2018-2022.

444

445 4.6 Surface albedo

446 Figure 16 shows the global 5-year (2018-2022) mean surface albedo comparison between
447  MODIS and LIS/Noah-MP simulations driven by the USAF forcing. Both LIS/Noah-MPv4.0.1
448  and LIS/Noah-MPv5.0 simulations capture the spatial and seasonal surface albedo distributions
449  with similar bias patterns (Figures 16 and S7). LIS/Noah-MPv4.0.1 shows consistently
450  overestimated surface albedo over most global regions by up to 0.05 or more, except for significant
451  underestimates in the Sahara Desert and Antarctica which dominate the global mean bias (-0.02).
452  This bias pattern is consistent across different seasons (Figure S7). Compared to LIS/Noah-
453  MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of surface albedo across mid-latitudes
454  and high-latitudes due to lower snow cover (Section 4.5), which reduces the high bias of surface
455 albedo particularly in the midlatitudes (Figure 16). The remaining albedo overestimates in
456  LIS/Noah-MPv5.0 in the mid-latitude and high-latitude snowpacks are partially caused by the
457  overestimated snow cover (Figure l4e) and also likely by the soil and vegetation albedo
458  uncertainties. The systematic surface albedo underestimates in the Sahara Desert, Antarctica, and
459  Greenland further indicate model biases in the background albedo for desert soil and glacier
460  ice/snow albedo.

461
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462
463  Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by

464  USAF forcing globally averaged during 2018-2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1
465  simulation, (¢) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases (model minus
466  MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between
467  LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant
468  differences (p < 0.05) are shown with gray dots in panels (d)-(f). The global mean value is also
469  provided in the lower right of each panel. See Figure S7 for seasonal plots.

470

471 The CONUS-wide regional evaluation between MODIS and LIS/Noah-MP simulations
472 driven by the NLDAS-2 forcing also reveals a consistently high bias in surface albedo in
473 LIS/Noah-MPv4.0.1 across the CONUS, except in some parts of southwest US (Figure 17), with
474  a CONUS mean bias of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean albedo bias to
475  0.023 due to improved snow cover simulations (Figures 15f and 17f). The remaining albedo
476  overestimates in the western U.S. is partially due to the snow cover bias (Figure 15¢) and snow
477  albedo bias (He et al., 2019; Abolafia-Rosenzweig et al., 2022). The albedo overestimates in the
478  rest of CONUS may be related to the model uncertainty in background soil and vegetation albedo
479  (see Section 5 for discussion).

480

21



https://doi.org/10.5194/egusphere-2024-4176
Preprint. Discussion started: 25 February 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

(a) MODIS (b) Model (v4.0.1) (c) Model (v5.0)
2 0.2 0.2
0.1 0.1
0.0 . s 0.0
(f) Model (v5.0) - Model (v4.0.1)
\; Q 4 7 i
0.05 [¥ =~ -Aq}o.05
0.00 0.00
-0.05 -0.05

481
482  Figure 17. Same as Figure 16, but for evaluation of LIS/Noah-MP simulations driven by the

483  NLDAS-2 forcing over the CONUS averaged during 2018-2022.

484

485 5. Discussions for model improvements

486 The evaluation of global and regional benchmark simulations (Section 4) reveals several
487  important Noah-MP model uncertainties and deficiencies, which calls for future model
488  improvements.

489 First, the model biases in soil moisture and LH (Sections 4.1 and 4.2) partially reflect the
490 inadequate representation of plant hydraulics and root schemes and/or too shallow soil column
491  configuration (e.g., in the Amazon), which have also been highlighted by a few previous studies
492  (e.g., Niuetal., 2020; Li et al., 2021; Bieri et al., 2024). Recently, Li et al. (2021) developed a new
493  whole-plant hydraulics scheme for Noah-MP with observation-constrained parameters (Sun et al.,
494  2024), which largely improves simulations of ET and terrestrial water storage (TWS) compared to
495  the default soil hydraulics scheme in Noah-MP. Other studies (e.g., Niu et al., 2020; Bieri et al.,
496  2024) developed dynamic root uptake schemes in Noah-MP that improve modeled soil moisture,
497  ET, and TWS. These model updates have not been included in the community Noah-MPv5.0,
498  which needs to be done in the future. Another possible model deficiency that could result in the
499  LH bias is the canopy turbulence scheme. Noah-MP uses the Monin—Obukhov (M-0) similarity
500 theory to compute momentum and heat exchange coefficients above and through the canopy,
501  which however does not account for the canopy-induced turbulence in the roughness sublayer
502  (RSL) and hence fails above and within dense forests (Bonan et al., 2018). Abolafia-Rosenzweig
503 etal. (2021) implemented and evaluated a unified RSL turbulence scheme throughout the canopy
504 in an earlier Noah-MP version, which demonstrates the potential of improving modeled surface

505 heat fluxes. We are currently working on a comprehensive assessment of this RSL canopy
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506  turbulence scheme in Noah-MPv5.0 across global FLUXNET sites. However, we note that the
507  satellite soil moisture data has large uncertainties over dense forests. In addition, the input soil
508 texture data could also impact the modeled soil moisture and hence ET. Li et al. (2024) recently
509 developed a global 1-km high-quality datasets for key land surface parameters (including soil
510 texture), and we plan to test the effect of using this new dataset in Noah-MP simulations in our
511  next step.

512 Second, the model biases in snowpack, including SWE, snow depth, and snow cover,
513 reveal inadequate treatments of snow physics. For example, the SWE underestimates over
514  midlatitude mountains (e.g., the Himalayas and western U.S. high mountains) could be caused by
515 the snow ablation bias in the model, in addition to the precipitation and temperature forcing
516  uncertainty (Section 4.3). He et al. (2021) found that Noah-MP tends to melt snow faster than
517  observations in some western US mountain areas, likely due to wind and solar radiation forcing
518  Dbiases and/or model deficiencies in above-snowpack turbulence, canopy radiative transfer, and
519  snow albedo. Recently, Lin et al. (2025) coupled Noah-MPv5.0 with a widely used physical snow
520 albedo scheme, SNICAR-ADvV3 (Flanner et al., 2021; He et al., 2024a), and found improved snow
521  albedo relative to the default semi-empirical snow albedo scheme in Noah-MP. This snow albedo
522  physics update will be included in the next Noah-MP major version release. The snow depth bias
523  isnot only driven by the SWE bias but also by uncertainty in snow compaction processes. A recent
524 study (Abolafia-Rosenzweig et al.,, 2024b) enhanced the Noah-MP snow compaction
525  parameterization constrained by in-situ measurements across ~800 SNOTEL sites in the western
526 U.S., which is currently being transferred to the Noah-MPv5.0
527  (https://github.com/NCAR/noahmp/pull/148; last access: November 24, 2024). In addition, a new
528 flexible framework was recently developed to couple the LSMs (including Noah-MPv4.0.1) in LIS
529  with a physical snow model, Crocus, which shows promising improvements in modeling snow
530 depth and SWE (Navari et al., 2024). The systematically overestimated snow cover fraction in
531  Noah-MP is a long-standing model problem, which has been investigated by several studies over
532  different mountain regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023). A number of
533  improvements in the model snow cover parameterization have been proposed for the Tibetan
534  Plateau (Jiang et al., 2020; Zhou et al., 2023) and the western U.S. (Abolafia-Rosenzweig et al.,
535  2024c). These solutions, however, need to be tested for global applications.
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536 Third, the model biases in surface albedo, particularly over the Sahara Desert and glaciers,
537  suggest possible deficiencies in background desert soil albedo and glacier albedo. Currently, Noah-
538  MPv5.0 assumes a uniform medium soil color everywhere, whereas using a spatially-varying soil
539  color map (Lawrence and Chase, 2007) tends to reduce Noah-MP surface albedo particularly over
540 the desert (Michael Barlage, personal communication), which will be tested in NoahMPv5.0
541  together with the aforementioned Li et al. (2024) global 1-km input datasets. To improve glacier
542  modeling, Eidhammer et al. (2021) coupled the Crocus snow/ice model with Noah-MP within the
543  WRF-Hydro framework, which reproduces the observed glacier surface albedo and mass balance
544  in Norwegian glaciers. Future Noah-MP model improvements need to also focus on glacier regions,
545  which were less studied in previous Noah-MP applications. In addition, vegetation albedo (and
546  canopy radiative transfer) may also contribute to the surface albedo biases in Noah-MP, which
547  however lacks systematic assessments in the literature and hence needs more future investigations.
548

549 6. Conclusions

550 In this study, we integrated the refactored community Noah-MPv5.0 model with the NASA
551 LIS system (version 7.5.2) through the GitHub submodule mechanism to streamline the
552  synchronization, development, and maintenance of Noah-MP within LIS and to enhance the
553  interoperability and applicability of both models. The GitHub submodule mechanism also allows
554  for more rapid implementation of bug fixes as well as new versions of Noah-MP (such as including
555 the new physics detailed in Section 5) into the LIS software framework. We systematically
556  evaluated multi-year (2018-2022) global and regional (CONUS) LIS/Noah-MP benchmark
557  simulations driven by the USAF and NLDAS-2 atmospheric forcing, respectively, for a set of key
558 land surface variables.

559 Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the
560 spatial and seasonal distributions of observed surface and root-zone soil moisture, LH, SWE, snow
561  depth, snow cover, and surface albedo, with similar bias patterns. For surface and root-zone soil
562  moisture, model simulations tend to have negative biases over wet soil regimes and positive biases
563  over dry soil regimes, with slightly higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-
564  MPv4.0.1 across most regions. Due to the offset of positive and negative soil moisture biases

565  across different regions, the global mean biases of both models are relatively small.
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566 For LH, the model bias patterns generally follow those of soil moisture, with negative
567  (positive) LH biases over areas with negative (positive) soil moisture biases across most global
568  regions. Although LIS/Noah-MPv5.0 has a slightly higher soil moisture than LIS/Noah-MPv4.0.1,
569 it shows a lower LH across most non-polar regions, which reduces the global mean LH bias from
570  0.99 W/m? (LIS/Noah-MPv4.0.1) to -0.39 W/m? (LIS/Noah-MPv5.0).

571 For snowpack conditions, the model SWE bias patterns are dominated by the precipitation
572  and temperature forcing uncertainties, with large SWE underestimates in the Himalayas, west
573  Canada, and western U.S. mountains and overestimates in most other mid-latitude and high-
574  latitude snowpacks. The SWE biases are similar for both models, with slightly larger
575  underestimates in LIS/Noah-MPv5.0 (global mean bias of -13.2 mm) than LIS/Noah-MPv4.0.1
576  (global mean bias of -10.1 mm). The model bias patterns of snow depth generally follow those of
577 SWE, with a global mean bias of ~0.06 m for both simulations. For snow cover, LIS/Noah-
578 MPv4.0.1 has a systematic large overestimate across the globe, even over regions with
579  underestimated SWE, which is a long-standing Noah-MP problem. LIS/Noah-MPv5.0 with
580 updated snow cover parameters effectively reduces the snow cover overestimates globally,
581  decreasing the global mean bias from 0.11 to 0.07.

582 For surface albedo, both models show widespread overestimates over most mid-latitude
583 and high-latitude regions partially due to the snow cover overestimate, and significant
584  underestimates in the Sahara Desert, Greenland, and Antarctica, which dominate the global mean
585  bias. Because of the reduced snow cover, LIS/Noah-MPv5.0 shows consistently lower surface
586  albedo than LIS/Noah-MPv4.0.1, which degrades the global mean bias from -0.018 to -0.033.
587 The model evaluation in this study reveals several important Noah-MP uncertainties and
588 deficiencies and motivates future improvements in model processes/components including plant
589  hydraulics and dynamic root uptake, canopy turbulence and interaction with snowpack, input soil
590 texture and color data, snow cover and albedo, glacier ice, and vegetation albedo (canopy radiative
591 transfer).

592

593

594

595

596
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598
599  Appendix
600 Table A1. Default Noah-MP physics options used in this study
Noah-MP Physics Option Description
dynamic vegetation option 4 use table LAI and maximum vegetation fraction
rain-snow partition option 1 Jordan (1991) scheme
soil moisture factor fgr stomatal 1 Noah (soil moisture) (Ek et al., 2003)
resistance option
ground resistance option 1 Sakaguchi and Zeng (2009) scheme
. . Monin-Obukhov (M-O) Similarity Theory
surface drag coefficient option 1 (Brutsaert, 1982)
canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996)
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993)
canony radiation transfer ontion 3 two-stream applied to vegetated fraction (Niu
py P and Yang, 2004)
snow/soil temperature time 1 semi-implicit; flux top boundary condition (Niu
scheme option etal., 2011)
snow thermal conductivity option 1 Stieglitz scheme (Yen,1965)
lower boundary of soil ) Deep soil boundary temperature read from input
temperature option file (Niu et al., 2011)
soil supercoolgd liquid water 1 No iteration (Niu and Yang, 2006)
option
runoff option 3 Schaake scheme (Schaake et al., 1996)
frozen soil permeability option 1 1218825 effects, more permeable (Niu and Yang,
soil configuration option 1 use input dominant soil texture
glacier treatment option 1 include phase change of glacier ice
tile drainage option 0 No tile drainage
irrigation option 0 No irrigation
dynamic crop model option 0 No dynamic crop model
601
602
603  Code and data availability
604 1. The data and scripts produced in this study is available at
605  https://doi.org/10.5281/zenodo.14567219 (He et al., 2025).
606 2. The LIS/Noah-MPv5.0 model code produced and used in this study is available at
607  https://doi.org/10.5281/zenodo.14567646 (He et al., 2024b).
608
609
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